You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

SessionTest.cs 7.2 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using NumSharp;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.Reflection;
  6. using System.Runtime.CompilerServices;
  7. using System.Text;
  8. using FluentAssertions;
  9. using Google.Protobuf;
  10. using NumSharp.Backends;
  11. using Tensorflow;
  12. using Tensorflow.Util;
  13. using static Tensorflow.Binding;
  14. namespace TensorFlowNET.UnitTest
  15. {
  16. [TestClass]
  17. public class SessionTest : CApiTest
  18. {
  19. /// <summary>
  20. /// tensorflow\c\c_api_test.cc
  21. /// `TEST(CAPI, Session)`
  22. /// </summary>
  23. [TestMethod, Ignore]
  24. public void Session()
  25. {
  26. lock (Locks.ProcessWide)
  27. {
  28. var s = new Status();
  29. var graph = new Graph().as_default();
  30. // Make a placeholder operation.
  31. var feed = c_test_util.Placeholder(graph, s);
  32. // Make a constant operation with the scalar "2".
  33. var two = c_test_util.ScalarConst(2, graph, s);
  34. // Add operation.
  35. var add = c_test_util.Add(feed, two, graph, s);
  36. var csession = new CSession(graph, s);
  37. ASSERT_EQ(TF_Code.TF_OK, s.Code);
  38. // Run the graph.
  39. var inputs = new Dictionary<Operation, Tensor>();
  40. inputs.Add(feed, new Tensor(3));
  41. csession.SetInputs(inputs);
  42. var outputs = new TF_Output[] {new TF_Output(add, 0)};
  43. csession.SetOutputs(outputs);
  44. csession.Run(s);
  45. Tensor outTensor = csession.output_tensor(0);
  46. EXPECT_EQ(TF_DataType.TF_INT32, outTensor.dtype);
  47. EXPECT_EQ(0, outTensor.NDims);
  48. ASSERT_EQ((ulong) sizeof(uint), outTensor.bytesize);
  49. var output_contents = outTensor.ToArray<int>();
  50. EXPECT_EQ(3 + 2, output_contents[0]);
  51. // Add another operation to the graph.
  52. var neg = c_test_util.Neg(add, graph, s);
  53. ASSERT_EQ(TF_Code.TF_OK, s.Code);
  54. // Run up to the new operation.
  55. inputs = new Dictionary<Operation, Tensor>();
  56. inputs.Add(feed, new Tensor(7));
  57. csession.SetInputs(inputs);
  58. outputs = new TF_Output[] {new TF_Output(neg, 0)};
  59. csession.SetOutputs(outputs);
  60. csession.Run(s);
  61. ASSERT_EQ(TF_Code.TF_OK, s.Code);
  62. outTensor = csession.output_tensor(0);
  63. ASSERT_TRUE(outTensor != IntPtr.Zero);
  64. EXPECT_EQ(TF_DataType.TF_INT32, outTensor.dtype);
  65. EXPECT_EQ(0, outTensor.NDims); // scalar
  66. ASSERT_EQ((ulong) sizeof(uint), outTensor.bytesize);
  67. output_contents = outTensor.ToArray<int>();
  68. EXPECT_EQ(-(7 + 2), output_contents[0]);
  69. // Clean up
  70. csession.CloseAndDelete(s);
  71. ASSERT_EQ(TF_Code.TF_OK, s.Code);
  72. }
  73. }
  74. [TestMethod]
  75. public void EvalTensor()
  76. {
  77. lock (this)
  78. {
  79. var a = constant_op.constant(np.array(3.0).reshape(1, 1));
  80. var b = constant_op.constant(np.array(2.0).reshape(1, 1));
  81. var c = math_ops.matmul(a, b, name: "matmul");
  82. using (var sess = tf.Session())
  83. {
  84. var result = c.eval(sess);
  85. Assert.AreEqual(6, result.GetAtIndex<double>(0));
  86. }
  87. }
  88. }
  89. [TestMethod]
  90. public void Eval_SmallString_Scalar()
  91. {
  92. lock (this)
  93. {
  94. var a = constant_op.constant("123 heythere 123 ", TF_DataType.TF_STRING);
  95. var c = tf.strings.substr(a, 4, 8);
  96. using (var sess = tf.Session())
  97. {
  98. var result = UTF8Encoding.UTF8.GetString((byte[])c.eval(sess));
  99. Console.WriteLine(result);
  100. result.Should().Be("heythere");
  101. }
  102. }
  103. }
  104. [TestMethod]
  105. public void Eval_LargeString_Scalar()
  106. {
  107. lock (this)
  108. {
  109. const int size = 30_000;
  110. var a = constant_op.constant(new string('a', size), TF_DataType.TF_STRING);
  111. var c = tf.strings.substr(a, 0, size - 5000);
  112. using (var sess = tf.Session())
  113. {
  114. var result = UTF8Encoding.UTF8.GetString((byte[])c.eval(sess));
  115. Console.WriteLine(result);
  116. result.Should().HaveLength(size - 5000).And.ContainAll("a");
  117. }
  118. }
  119. }
  120. [TestMethod]
  121. public void Autocast_Case1()
  122. {
  123. var sess = tf.Session().as_default();
  124. var input = tf.placeholder(tf.float64, shape: new TensorShape(6));
  125. var op = tf.reshape(input, new int[] {2, 3});
  126. sess.run(tf.global_variables_initializer());
  127. var ret = sess.run(op, feed_dict: (input, np.array(1, 2, 3, 4, 5, 6)));
  128. ret.Should().BeOfType<double>().And.BeShaped(2, 3).And.BeOfValues(1, 2, 3, 4, 5, 6);
  129. print(ret.dtype);
  130. print(ret);
  131. }
  132. [TestMethod]
  133. public void Autocast_Case2()
  134. {
  135. var sess = tf.Session().as_default();
  136. var input = tf.placeholder(tf.float64, shape: new TensorShape(6));
  137. var op = tf.reshape(input, new int[] {2, 3});
  138. sess.run(tf.global_variables_initializer());
  139. var ret = sess.run(op, feed_dict: (input, np.array(1, 2, 3, 4, 5, 6).astype(NPTypeCode.Single) + 0.1f));
  140. ret.Should().BeOfType<double>().And.BeShaped(2, 3).And.BeOfValuesApproximately(0.001d, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1);
  141. print(ret.dtype);
  142. print(ret);
  143. }
  144. [TestMethod]
  145. public void Autocast_Case3()
  146. {
  147. var sess = tf.Session().as_default();
  148. var input = tf.placeholder(tf.int16, shape: new TensorShape(6));
  149. var op = tf.reshape(input, new int[] {2, 3});
  150. sess.run(tf.global_variables_initializer());
  151. var ret = sess.run(op, feed_dict: (input, np.array(1, 2, 3, 4, 5, 6).astype(NPTypeCode.Single) + 0.1f));
  152. ret.Should().BeOfType<short>().And.BeShaped(2, 3).And.BeOfValues(1, 2, 3, 4, 5, 6);
  153. print(ret.dtype);
  154. print(ret);
  155. }
  156. [TestMethod]
  157. public void Autocast_Case4()
  158. {
  159. var sess = tf.Session().as_default();
  160. var input = tf.placeholder(tf.@byte, shape: new TensorShape(6));
  161. var op = tf.reshape(input, new int[] {2, 3});
  162. sess.run(tf.global_variables_initializer());
  163. var ret = sess.run(op, feed_dict: (input, np.array(1, 2, 3, 4, 5, 6).astype(NPTypeCode.Single) + 0.1f));
  164. ret.Should().BeOfType<byte>().And.BeShaped(2, 3).And.BeOfValues(1, 2, 3, 4, 5, 6);
  165. print(ret.dtype);
  166. print(ret);
  167. }
  168. }
  169. }