You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ControlDependenciesTest.cs 14 kB

6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. using System;
  2. using System.Collections.Generic;
  3. using System.Linq;
  4. using System.Text;
  5. using Microsoft.VisualStudio.TestTools.UnitTesting;
  6. using Tensorflow;
  7. using Tensorflow.Eager;
  8. namespace TensorFlowNET.UnitTest.ops_test
  9. {
  10. /// <summary>
  11. /// excerpt of tensorflow/python/framework/ops_test.py
  12. /// </summary>
  13. [TestClass]
  14. public class ControlDependenciesTest : PythonTest
  15. {
  16. [TestMethod]
  17. public void TestBasic()
  18. {
  19. var graph = tf.Graph().as_default();
  20. Tensor a = null, b = null, c = null, d = null, e = null;
  21. with<Graph>(graph, g =>
  22. {
  23. a = constant_op.constant(1.0);
  24. b = constant_op.constant(1.0);
  25. with(g.control_dependencies(new[] { a }), x =>
  26. {
  27. c = constant_op.constant(1.0);
  28. d = array_ops.identity(b);
  29. e = array_ops.identity(c);
  30. });
  31. });
  32. Assert.IsTrue(Enumerable.SequenceEqual(c.op.control_inputs, new[] { a.op }));
  33. Assert.IsTrue(Enumerable.SequenceEqual(d.op.control_inputs, new[] { a.op }));
  34. // e should be dominated by c.
  35. Assert.AreEqual(0, e.op.control_inputs.Length);
  36. }
  37. [Ignore("Future is not supported yet")]
  38. [TestMethod]
  39. public void TestEager()
  40. {
  41. Tensor a = null, c = null, d = null, e = null;
  42. object b = null;
  43. var calls = 0;
  44. Func<Tensor> future = () =>
  45. {
  46. calls += 1;
  47. return constant_op.constant(2.0);
  48. };
  49. using (var opts = new ContextOptions())
  50. using (var status = new Status())
  51. using (var context = new Context(opts, status))
  52. {
  53. if (context.executing_eagerly())
  54. {
  55. // TODO: make this compile (see original Python code below)
  56. a = constant_op.constant(1.0);
  57. b = future; // <--- {henon} obviously, this doesn't compile, looks like control_dependencies needs to be able to take callables as well.
  58. with(ops.control_dependencies(new object[] { a, b }), ctrl =>
  59. {
  60. return c = constant_op.constant(3.0);
  61. });
  62. Assert.AreEqual(calls, 1);
  63. }
  64. else
  65. {
  66. var graph = tf.Graph().as_default();
  67. with<Graph>(graph, g =>
  68. {
  69. a = constant_op.constant(1.0);
  70. var b1 = future();
  71. with(g.control_dependencies(new[] { a, b }), ctrl =>
  72. {
  73. c = constant_op.constant(3.0);
  74. });
  75. Assert.IsTrue(Enumerable.SequenceEqual(c.op.control_inputs, new[] { a.op, b1.op }));
  76. Assert.AreEqual(1, calls);
  77. });
  78. }
  79. }
  80. /*
  81. def testEager(self):
  82. def future():
  83. future.calls += 1
  84. return constant_op.constant(2.0)
  85. future.calls = 0
  86. if context.executing_eagerly():
  87. a = constant_op.constant(1.0)
  88. b = future
  89. with ops.control_dependencies([a, b]):
  90. c = constant_op.constant(3.0)
  91. self.assertEqual(future.calls, 1)
  92. else:
  93. g = ops.Graph()
  94. with g.as_default():
  95. a = constant_op.constant(1.0)
  96. b = future()
  97. with g.control_dependencies([a, b]):
  98. c = constant_op.constant(3.0)
  99. self.assertEqual(c.op.control_inputs, [a.op, b.op])
  100. self.assertEqual(future.calls, 1)
  101. */
  102. }
  103. [Ignore("How to port the ConvertibleObj?")]
  104. [TestMethod]
  105. public void TestBasicWithConversion()
  106. {
  107. var g = tf.Graph().as_default();
  108. // Note: _apply_op can be replaced by g.create_op
  109. var a = g.create_op("FloatOutput", new Tensor[] { }, new[] { TF_DataType.TF_FLOAT });
  110. // TODO: ConvertibleObj, see original source below
  111. /*
  112. def testBasicWithConversion(self):
  113. g = ops.Graph()
  114. a = _apply_op(g, "FloatOutput", [], [dtypes.float32])
  115. class ConvertibleObj(object):
  116. def _as_graph_element(self):
  117. return a
  118. with g.control_dependencies([ConvertibleObj()]):
  119. c = _apply_op(g, "FloatOutput", [], [dtypes.float32])
  120. self.assertEqual(c.op.control_inputs, [a.op])
  121. */
  122. }
  123. [TestMethod]
  124. public void TestNested()
  125. {
  126. var g = tf.Graph().as_default();
  127. var a_1 = constant_op.constant(1.0);
  128. var a_2 = constant_op.constant(3.0);
  129. var a_3 = constant_op.constant(4.0);
  130. var a_4 = constant_op.constant(5.0);
  131. Tensor b_1 = null, b_2 = null;
  132. with(g.control_dependencies(new[] { a_1, a_2, a_3, a_4 }), ctrl =>
  133. {
  134. b_1 = constant_op.constant(6.0);
  135. });
  136. with(g.control_dependencies(new[] { a_1 }), ctrl1 =>
  137. {
  138. with(g.control_dependencies(new[] { a_2 }), ctrl2 =>
  139. {
  140. with(g.control_dependencies(new[] { a_3 }), ctrl3 =>
  141. {
  142. with(g.control_dependencies(new[] { a_4 }), ctrl4 =>
  143. {
  144. b_2 = constant_op.constant(7.0);
  145. });
  146. });
  147. });
  148. });
  149. var z=tf.add(a_1, tf.multiply(b_2, b_1));
  150. with(g.control_dependencies(new[] {z}), ctrl =>
  151. {
  152. var z1 = tf.add(a_3, tf.multiply(a_4, a_2));
  153. });
  154. tf.train.export_meta_graph(@"D:\dev\tensorboard\logdir\sharp.meta", as_text: false);
  155. assertItemsEqual(b_1.op.control_inputs, new[] { a_1.op, a_2.op, a_3.op, a_4.op });
  156. assertItemsEqual(b_2.op.control_inputs, b_1.op.control_inputs);
  157. }
  158. [TestMethod]
  159. public void TestClear()
  160. {
  161. var g = tf.Graph().as_default();
  162. var a_1 = constant_op.constant(1.0);
  163. var a_2 = constant_op.constant(3.0);
  164. var a_3 = constant_op.constant(4.0);
  165. var a_4 = constant_op.constant(5.0);
  166. Operation b_3_4 = null, b_3 = null, b_none = null, b_1 = null, b_1_2 = null, b_none2 = null;
  167. with(g.control_dependencies(new[] { a_1 }), ctrl1 =>
  168. {
  169. with(g.control_dependencies(new[] { a_2 }), ctrl2 =>
  170. {
  171. with(g.control_dependencies(null), ctrl3 =>
  172. {
  173. with(g.control_dependencies(new[] { a_3 }), ctrl4 =>
  174. {
  175. with(g.control_dependencies(new[] { a_4 }), ctrl5 =>
  176. {
  177. // deps [a_3, a_4]
  178. b_3_4 = constant_op.constant(7.0);
  179. });
  180. // deps = [a_3]
  181. b_3 = constant_op.constant(8.0);
  182. });
  183. // deps back to None
  184. b_none = constant_op.constant(9.0);
  185. });
  186. // deps back to [a_1, a_2]
  187. b_1_2 = constant_op.constant(10.0);
  188. });
  189. // deps back to [a_1]
  190. b_1 = constant_op.constant(11.0);
  191. with(g.control_dependencies(null), ctrl6 =>
  192. {
  193. // deps are None again
  194. b_none2 = constant_op.constant(12.0);
  195. });
  196. });
  197. // Note assertItemsEqual(given, expected), expected and given parameters should be swapped below
  198. assertItemsEqual(new[] { a_3.op, a_4.op }, b_3_4.op.control_inputs);
  199. assertItemsEqual(new[] { a_3.op }, b_3.op.control_inputs);
  200. assertItemsEqual(new object[0], b_none.op.control_inputs);
  201. assertItemsEqual(new[] { a_1.op, a_2.op }, b_1_2.op.control_inputs);
  202. assertItemsEqual(new[] { a_1.op }, b_1.op.control_inputs);
  203. assertItemsEqual(new object[0], b_none2.op.control_inputs);
  204. }
  205. [TestMethod]
  206. public void TestComplex()
  207. {
  208. var g = tf.Graph().as_default();
  209. // Usage pattern:
  210. // * Nodes a_i are constants defined at the outermost scope, and are used
  211. // as control inputs for the ith nested scope.
  212. // * Nodes b_i are defined as Mul(a_3, a_4) at each scope.
  213. // * Nodes c_i are defined as Mul(a_1, b_1) at each scope.
  214. // * Nodes d_i are defined as Mul(b_i, c_i) at each scope.
  215. // * Nodes e_i are defined as Mul(e_i-1, e_i-1) at each scope i > 1.
  216. var a_1 = constant_op.constant(1.0);
  217. var a_2 = constant_op.constant(2.0);
  218. var a_3 = constant_op.constant(3.0);
  219. var a_4 = constant_op.constant(4.0);
  220. Operation b_1 = null, b_2 = null, b_3 = null, b_4 = null;
  221. Operation c_1 = null, c_2 = null, c_3 = null, c_4 = null;
  222. Operation d_1 = null, d_2 = null, d_3 = null, d_4 = null;
  223. Operation e_1 = null, e_2 = null, e_3 = null, e_4 = null;
  224. with(g.control_dependencies(new[] { a_1 }), ctrl1 =>
  225. {
  226. b_1 = tf.multiply(a_3, a_4);
  227. c_1 = tf.multiply(a_1, b_1.output);
  228. d_1 = tf.multiply(b_1.output, c_1.output);
  229. e_1 = constant_op.constant(5.0);
  230. with(g.control_dependencies(new[] { a_2 }), ctrl2 =>
  231. {
  232. b_2 = tf.multiply(a_3, a_4);
  233. c_2 = tf.multiply(a_1, b_1.output);
  234. d_2 = tf.multiply(b_2.output, c_2.output);
  235. e_2 = tf.multiply(e_1.output, e_1.output);
  236. with(g.control_dependencies(new[] { a_3 }), ctrl3 =>
  237. {
  238. b_3 = tf.multiply(a_3, a_4);
  239. c_3 = tf.multiply(a_1, b_1.output);
  240. d_3 = tf.multiply(b_3.output, c_3.output);
  241. e_3 = tf.multiply(e_2.output, e_2.output);
  242. with(g.control_dependencies(new[] { a_4 }), ctrl4 =>
  243. {
  244. b_4 = tf.multiply(a_3, a_4);
  245. c_4 = tf.multiply(a_1, b_1.output);
  246. d_4 = tf.multiply(b_4.output, c_4.output);
  247. e_4 = tf.multiply(e_3.output, e_3.output);
  248. });
  249. });
  250. });
  251. });
  252. // Note assertItemsEqual(given, expected), expected and given parameters should be swapped below
  253. assertItemsEqual(new[] {a_1.op}, b_1.op.control_inputs);
  254. assertItemsEqual(new[] {a_1.op, a_2.op}, b_2.op.control_inputs);
  255. assertItemsEqual(new[] { a_1.op, a_2.op}, b_3.op.control_inputs);
  256. assertItemsEqual(new[] {a_1.op, a_2.op}, b_4.op.control_inputs);
  257. assertItemsEqual(new object[0], c_1.op.control_inputs);
  258. assertItemsEqual(new[] {a_2.op}, c_2.op.control_inputs);
  259. assertItemsEqual(new[] {a_2.op, a_3.op}, c_3.op.control_inputs);
  260. assertItemsEqual(new[] {a_2.op, a_3.op, a_4.op}, c_4.op.control_inputs);
  261. assertItemsEqual(new object[0], d_1.op.control_inputs);
  262. assertItemsEqual(new object[0], d_2.op.control_inputs);
  263. assertItemsEqual(new object[0], d_3.op.control_inputs);
  264. assertItemsEqual(new object[0], d_4.op.control_inputs);
  265. assertItemsEqual(new[] {a_1.op}, e_1.op.control_inputs);
  266. assertItemsEqual(new[] {a_2.op}, e_2.op.control_inputs);
  267. assertItemsEqual(new[] {a_3.op}, e_3.op.control_inputs);
  268. assertItemsEqual(new[] {a_4.op}, e_4.op.control_inputs);
  269. }
  270. [Ignore("Don't know how to create an operation with two outputs")]
  271. [TestMethod]
  272. public void TestRepeatedDependency()
  273. {
  274. /*
  275. def testRepeatedDependency(self):
  276. g = ops.Graph()
  277. a = g.create_op("TwoFloatOutputs", [], [dtypes.float32, dtypes.float32])
  278. a_0, a_1 = a.outputs
  279. with g.control_dependencies([a_0]):
  280. b = _apply_op(g, "FloatOutput", [], [dtypes.float32])
  281. with g.control_dependencies([a_1]):
  282. c = _apply_op(g, "FloatOutput", [], [dtypes.float32])
  283. self.assertEqual(b.op.control_inputs, [a])
  284. self.assertEqual(c.op.control_inputs, [a])
  285. */
  286. }
  287. [TestMethod]
  288. public void TestNoControlDependencyWithDataDependency()
  289. {
  290. var g = tf.Graph().as_default();
  291. Operation b = null;
  292. var a = constant_op.constant(100.0);
  293. with(g.control_dependencies(new[] { a }), ctrl1 =>
  294. {
  295. b = array_ops.identity(a);
  296. });
  297. Assert.AreEqual(0, b.op.control_inputs.Length);
  298. }
  299. }
  300. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。