You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

Layers.Convolution.Test.cs 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using System.Linq;
  3. using Tensorflow.NumPy;
  4. using static Tensorflow.KerasApi;
  5. using static Tensorflow.Binding;
  6. namespace Tensorflow.Keras.UnitTest.Layers
  7. {
  8. [TestClass]
  9. public class LayersConvolutionTest : EagerModeTestBase
  10. {
  11. [TestMethod]
  12. public void BasicConv1D()
  13. {
  14. var filters = 8;
  15. var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear");
  16. var x = np.arange(256.0f).reshape((8, 8, 4));
  17. var y = conv.Apply(x);
  18. Assert.AreEqual(y.shape, (8, 6, 8));
  19. Assert.AreEqual(filters, y.shape[2]);
  20. }
  21. [TestMethod]
  22. public void BasicConv1D_ksize()
  23. {
  24. var filters = 8;
  25. var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear");
  26. var x = np.arange(256.0f).reshape((8, 8, 4));
  27. var y = conv.Apply(x);
  28. Assert.AreEqual(3, y.shape.ndim);
  29. Assert.AreEqual(x.dims[0], y.shape[0]);
  30. Assert.AreEqual(x.dims[1] - 2, y.shape[1]);
  31. Assert.AreEqual(filters, y.shape[2]);
  32. }
  33. [TestMethod]
  34. public void BasicConv1D_ksize_same()
  35. {
  36. var filters = 8;
  37. var conv = keras.layers.Conv1D(filters, kernel_size: 3, padding: "same", activation: "linear");
  38. var x = np.arange(256.0f).reshape((8, 8, 4));
  39. var y = conv.Apply(x);
  40. Assert.AreEqual(3, y.shape.ndim);
  41. Assert.AreEqual(x.dims[0], y.shape[0]);
  42. Assert.AreEqual(x.dims[1], y.shape[1]);
  43. Assert.AreEqual(filters, y.shape[2]);
  44. }
  45. [TestMethod]
  46. public void BasicConv1D_ksize_strides()
  47. {
  48. var filters = 8;
  49. var conv = keras.layers.Conv1D(filters, kernel_size: 3, strides: 2, activation: "linear");
  50. var x = np.arange(256.0f).reshape((8, 8, 4));
  51. var y = conv.Apply(x);
  52. Assert.AreEqual(3, y.shape.ndim);
  53. Assert.AreEqual(x.dims[0], y.shape[0]);
  54. Assert.AreEqual(x.dims[1] - 5, y.shape[1]);
  55. Assert.AreEqual(filters, y.shape[2]);
  56. }
  57. [TestMethod]
  58. public void BasicConv1D_ksize_dilations()
  59. {
  60. var filters = 8;
  61. var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear");
  62. var x = np.arange(256.0f).reshape((8, 8, 4));
  63. var y = conv.Apply(x);
  64. Assert.AreEqual(3, y.shape.ndim);
  65. Assert.AreEqual(x.dims[0], y.shape[0]);
  66. Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
  67. Assert.AreEqual(filters, y.shape[2]);
  68. }
  69. [TestMethod]
  70. public void BasicConv1D_ksize_dilation_same()
  71. {
  72. var filters = 8;
  73. var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear");
  74. var x = np.arange(256.0f).reshape((8, 8, 4));
  75. var y = conv.Apply(x);
  76. Assert.AreEqual(3, y.shape.ndim);
  77. Assert.AreEqual(x.dims[0], y.shape[0]);
  78. Assert.AreEqual(x.dims[1], y.shape[1]);
  79. Assert.AreEqual(filters, y.shape[2]);
  80. }
  81. [TestMethod]
  82. public void BasicConv2D()
  83. {
  84. var filters = 8;
  85. var conv = keras.layers.Conv2D(filters, activation: "linear");
  86. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  87. var y = conv.Apply(x);
  88. Assert.AreEqual(4, y.shape.ndim);
  89. Assert.AreEqual(x.dims[0], y.shape[0]);
  90. Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
  91. Assert.AreEqual(x.dims[2] - 4, y.shape[2]);
  92. Assert.AreEqual(filters, y.shape[3]);
  93. }
  94. [TestMethod]
  95. public void BasicConv2D_ksize()
  96. {
  97. var filters = 8;
  98. var conv = keras.layers.Conv2D(filters, kernel_size: 3, activation: "linear");
  99. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  100. var y = conv.Apply(x);
  101. Assert.AreEqual(4, y.shape.ndim);
  102. Assert.AreEqual(x.dims[0], y.shape[0]);
  103. Assert.AreEqual(x.dims[1] - 2, y.shape[1]);
  104. Assert.AreEqual(x.dims[2] - 2, y.shape[2]);
  105. Assert.AreEqual(filters, y.shape[3]);
  106. }
  107. [TestMethod]
  108. public void BasicConv2D_ksize_same()
  109. {
  110. var filters = 8;
  111. var conv = keras.layers.Conv2D(filters, kernel_size: 3, padding: "same", activation: "linear");
  112. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  113. var y = conv.Apply(x);
  114. Assert.AreEqual(4, y.shape.ndim);
  115. Assert.AreEqual(x.dims[0], y.shape[0]);
  116. Assert.AreEqual(x.dims[1], y.shape[1]);
  117. Assert.AreEqual(x.dims[2], y.shape[2]);
  118. Assert.AreEqual(filters, y.shape[3]);
  119. }
  120. [TestMethod]
  121. public void BasicConv2D_ksize_strides()
  122. {
  123. var filters = 8;
  124. var conv = keras.layers.Conv2D(filters, kernel_size: 3, strides: 2, activation: "linear");
  125. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  126. var y = conv.Apply(x);
  127. Assert.AreEqual(4, y.shape.ndim);
  128. Assert.AreEqual(x.dims[0], y.shape[0]);
  129. Assert.AreEqual(x.dims[1] - 5, y.shape[1]);
  130. Assert.AreEqual(x.dims[2] - 5, y.shape[2]);
  131. Assert.AreEqual(filters, y.shape[3]);
  132. }
  133. [TestMethod]
  134. public void BasicConv2D_ksize_dilation()
  135. {
  136. var filters = 8;
  137. var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear");
  138. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  139. var y = conv.Apply(x);
  140. Assert.AreEqual(4, y.shape.ndim);
  141. Assert.AreEqual(x.dims[0], y.shape[0]);
  142. Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
  143. Assert.AreEqual(x.dims[2] - 4, y.shape[2]);
  144. Assert.AreEqual(filters, y.shape[3]);
  145. }
  146. [TestMethod]
  147. public void BasicConv2D_ksize_dilation_same()
  148. {
  149. var filters = 8;
  150. var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear");
  151. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  152. var y = conv.Apply(x);
  153. Assert.AreEqual(4, y.shape.ndim);
  154. Assert.AreEqual(x.dims[0], y.shape[0]);
  155. Assert.AreEqual(x.dims[1], y.shape[1]);
  156. Assert.AreEqual(x.dims[2], y.shape[2]);
  157. Assert.AreEqual(filters, y.shape[3]);
  158. }
  159. [TestMethod]
  160. public void BasicDepthwiseConv2D()
  161. {
  162. var conv = keras.layers.DepthwiseConv2D(kernel_size:3, strides:1, activation: null,
  163. padding:"same", depthwise_initializer: "ones");
  164. var x = np.arange(2 * 9* 9* 3).reshape((2, 9, 9, 3));
  165. var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT);
  166. var y = conv.Apply(x2);
  167. print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}");
  168. Assert.AreEqual(4, y.shape.ndim);
  169. var arr = y.numpy().reshape((2, 9, 9, 3));
  170. AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 });
  171. AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 2457f, 2466f, 2475f });
  172. var bn = keras.layers.BatchNormalization();
  173. var y2 = bn.Apply(y);
  174. arr = y2.numpy().ToArray<float>();
  175. double delta = 0.0001; // 误差范围
  176. Assert.AreEqual(arr[0], 59.97002f, delta);
  177. Assert.AreEqual(arr[1], 63.96802f, delta);
  178. }
  179. [TestMethod]
  180. public void BasicDepthwiseConv2D_strides_2()
  181. {
  182. var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: (1, 2, 2, 1), activation: null,
  183. padding: "same", depthwise_initializer: "ones");
  184. var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3));
  185. var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT);
  186. var y = conv.Apply(x2);
  187. print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}");
  188. Assert.AreEqual(4, y.shape.ndim);
  189. var arr = y.numpy().reshape((2, 5, 5, 3));
  190. AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 });
  191. AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 2727f, 2736f, 2745f });
  192. var bn = keras.layers.BatchNormalization();
  193. var y2 = bn.Apply(y);
  194. arr = y2.numpy().ToArray<float>();
  195. double delta = 0.0001; // 误差范围
  196. Assert.AreEqual(arr[0], 59.97002f, delta);
  197. Assert.AreEqual(arr[1], 63.96802f, delta);
  198. }
  199. [TestMethod]
  200. public void BasicDepthwiseConv2D_strides_3()
  201. {
  202. var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 3, activation: null,
  203. padding: "same", depthwise_initializer: "ones");
  204. var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3));
  205. var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT);
  206. var y = conv.Apply(x2);
  207. print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}");
  208. Assert.AreEqual(4, y.shape.ndim);
  209. var arr = y.numpy().reshape((2, 3, 3, 3));
  210. AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 });
  211. AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 3267f, 3276f, 3285f });
  212. var bn = keras.layers.BatchNormalization();
  213. var y2 = bn.Apply(y);
  214. arr = y2.numpy().ToArray<float>();
  215. double delta = 0.0001; // 误差范围
  216. Assert.AreEqual(arr[0], 269.86508f, delta);
  217. Assert.AreEqual(arr[1], 278.8606f, delta);
  218. }
  219. [TestMethod]
  220. public void BasicDepthwiseConv2D_UseBias()
  221. {
  222. var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 1, activation: null,
  223. use_bias: true, padding: "same",
  224. depthwise_initializer: "ones",
  225. bias_initializer:"ones"
  226. );
  227. var weight = conv.get_weights();
  228. var x = np.arange(9 * 9 * 3).reshape((1, 9, 9, 3));
  229. var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT);
  230. var y = conv.Apply(x2);
  231. Assert.AreEqual(4, y.shape.ndim);
  232. var arr = y.numpy().ToArray<float>();
  233. Assert.AreEqual(arr[0], 61f);
  234. Assert.AreEqual(arr[1], 65f);
  235. var bn = keras.layers.BatchNormalization();
  236. var y2 = bn.Apply(y);
  237. arr = y2.numpy().ToArray<float>();
  238. double delta = 0.0001; // 误差范围
  239. Assert.AreEqual(arr[0], 60.96952f, delta);
  240. Assert.AreEqual(arr[1], 64.96752f, delta);
  241. }
  242. }
  243. }