|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using System.Linq;
- using Tensorflow.NumPy;
- using static Tensorflow.KerasApi;
- using static Tensorflow.Binding;
-
- namespace Tensorflow.Keras.UnitTest.Layers
- {
- [TestClass]
- public class LayersConvolutionTest : EagerModeTestBase
- {
- [TestMethod]
- public void BasicConv1D()
- {
- var filters = 8;
-
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(y.shape, (8, 6, 8));
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv1D_ksize()
- {
- var filters = 8;
-
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 2, y.shape[1]);
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv1D_ksize_same()
- {
- var filters = 8;
-
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, padding: "same", activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1], y.shape[1]);
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv1D_ksize_strides()
- {
- var filters = 8;
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, strides: 2, activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 5, y.shape[1]);
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv1D_ksize_dilations()
- {
- var filters = 8;
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv1D_ksize_dilation_same()
- {
- var filters = 8;
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1], y.shape[1]);
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv2D()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
- Assert.AreEqual(x.dims[2] - 4, y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
- [TestMethod]
- public void BasicConv2D_ksize()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, kernel_size: 3, activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 2, y.shape[1]);
- Assert.AreEqual(x.dims[2] - 2, y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
- [TestMethod]
- public void BasicConv2D_ksize_same()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, kernel_size: 3, padding: "same", activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1], y.shape[1]);
- Assert.AreEqual(x.dims[2], y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
- [TestMethod]
- public void BasicConv2D_ksize_strides()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, kernel_size: 3, strides: 2, activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 5, y.shape[1]);
- Assert.AreEqual(x.dims[2] - 5, y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
- [TestMethod]
- public void BasicConv2D_ksize_dilation()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
- Assert.AreEqual(x.dims[2] - 4, y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
- [TestMethod]
- public void BasicConv2D_ksize_dilation_same()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1], y.shape[1]);
- Assert.AreEqual(x.dims[2], y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
-
- [TestMethod]
- public void BasicDepthwiseConv2D()
- {
- var conv = keras.layers.DepthwiseConv2D(kernel_size:3, strides:1, activation: null,
- padding:"same", depthwise_initializer: "ones");
-
- var x = np.arange(2 * 9* 9* 3).reshape((2, 9, 9, 3));
- var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT);
-
- var y = conv.Apply(x2);
-
- print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}");
-
-
- Assert.AreEqual(4, y.shape.ndim);
- var arr = y.numpy().reshape((2, 9, 9, 3));
-
- AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 });
- AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 2457f, 2466f, 2475f });
-
- var bn = keras.layers.BatchNormalization();
- var y2 = bn.Apply(y);
- arr = y2.numpy().ToArray<float>();
-
- double delta = 0.0001; // 误差范围
-
- Assert.AreEqual(arr[0], 59.97002f, delta);
- Assert.AreEqual(arr[1], 63.96802f, delta);
- }
-
-
- [TestMethod]
- public void BasicDepthwiseConv2D_strides_2()
- {
- var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: (1, 2, 2, 1), activation: null,
- padding: "same", depthwise_initializer: "ones");
-
- var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3));
- var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT);
-
- var y = conv.Apply(x2);
-
- print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}");
-
- Assert.AreEqual(4, y.shape.ndim);
- var arr = y.numpy().reshape((2, 5, 5, 3));
-
- AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 });
- AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 2727f, 2736f, 2745f });
-
- var bn = keras.layers.BatchNormalization();
- var y2 = bn.Apply(y);
- arr = y2.numpy().ToArray<float>();
-
- double delta = 0.0001; // 误差范围
-
- Assert.AreEqual(arr[0], 59.97002f, delta);
- Assert.AreEqual(arr[1], 63.96802f, delta);
- }
-
-
-
- [TestMethod]
- public void BasicDepthwiseConv2D_strides_3()
- {
- var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 3, activation: null,
- padding: "same", depthwise_initializer: "ones");
-
- var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3));
- var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT);
-
- var y = conv.Apply(x2);
-
- print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}");
-
- Assert.AreEqual(4, y.shape.ndim);
- var arr = y.numpy().reshape((2, 3, 3, 3));
-
- AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 });
- AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 3267f, 3276f, 3285f });
-
- var bn = keras.layers.BatchNormalization();
- var y2 = bn.Apply(y);
- arr = y2.numpy().ToArray<float>();
-
- double delta = 0.0001; // 误差范围
-
- Assert.AreEqual(arr[0], 269.86508f, delta);
- Assert.AreEqual(arr[1], 278.8606f, delta);
-
- }
- [TestMethod]
- public void BasicDepthwiseConv2D_UseBias()
- {
- var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 1, activation: null,
- use_bias: true, padding: "same",
- depthwise_initializer: "ones",
- bias_initializer:"ones"
- );
-
- var weight = conv.get_weights();
-
- var x = np.arange(9 * 9 * 3).reshape((1, 9, 9, 3));
- var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT);
- var y = conv.Apply(x2);
-
- Assert.AreEqual(4, y.shape.ndim);
- var arr = y.numpy().ToArray<float>();
-
- Assert.AreEqual(arr[0], 61f);
- Assert.AreEqual(arr[1], 65f);
-
- var bn = keras.layers.BatchNormalization();
- var y2 = bn.Apply(y);
- arr = y2.numpy().ToArray<float>();
-
- double delta = 0.0001; // 误差范围
-
- Assert.AreEqual(arr[0], 60.96952f, delta);
- Assert.AreEqual(arr[1], 64.96752f, delta);
- }
- }
- }
|