|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- Linear Regression in `Eager` mode:
-
- ```fsharp
- #r "nuget: TensorFlow.Net"
- #r "nuget: TensorFlow.Keras"
- #r "nuget: SciSharp.TensorFlow.Redist"
-
- open Tensorflow
- open Tensorflow.NumPy
- open type Tensorflow.Binding
- open type Tensorflow.KerasApi
-
- let tf = New<tensorflow>()
- tf.enable_eager_execution()
-
- // Parameters
- let training_steps = 1000
- let learning_rate = 0.01f
- let display_step = 100
-
- // Sample data
- let train_X =
- np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
- 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f)
- let train_Y =
- np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
- 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f)
- let n_samples = train_X.shape.[0]
-
- // We can set a fixed init value in order to demo
- let W = tf.Variable(-0.06f,name = "weight")
- let b = tf.Variable(-0.73f, name = "bias")
- let optimizer = keras.optimizers.SGD(learning_rate)
-
- // Run training for the given number of steps.
- for step = 1 to (training_steps + 1) do
- // Run the optimization to update W and b values.
- // Wrap computation inside a GradientTape for automatic differentiation.
- use g = tf.GradientTape()
- // Linear regression (Wx + b).
- let pred = W * train_X + b
- // Mean square error.
- let loss = tf.reduce_sum(tf.pow(pred - train_Y,2)) / (2 * n_samples)
- // should stop recording
- // compute gradients
- let gradients = g.gradient(loss,struct (W,b))
-
- // Update W and b following gradients.
- optimizer.apply_gradients(zip(gradients, struct (W,b)))
-
- if (step % display_step) = 0 then
- let pred = W * train_X + b
- let loss = tf.reduce_sum(tf.pow(pred-train_Y,2)) / (2 * n_samples)
- printfn $"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}"
- ```
|