You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

GradientsTest.cs 11 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using NumSharp;
  3. using System;
  4. using Tensorflow.Util;
  5. namespace Tensorflow.Native.UnitTest
  6. {
  7. /// <summary>
  8. /// tensorflow\c\c_api_test.cc
  9. /// `class CApiGradientsTest`
  10. /// </summary>
  11. [TestClass]
  12. public class GradientsTest : CApiTest, IDisposable
  13. {
  14. private Graph graph_ = new Graph();
  15. private Graph expected_graph_ = new Graph();
  16. private Status s_ = new Status();
  17. private void TestGradientsSuccess(bool grad_inputs_provided)
  18. {
  19. var inputs = new TF_Output[2];
  20. var outputs = new TF_Output[1];
  21. var grad_outputs = new TF_Output[2];
  22. var expected_grad_outputs = new TF_Output[2];
  23. BuildSuccessGraph(inputs, outputs);
  24. BuildExpectedGraph(grad_inputs_provided, expected_grad_outputs);
  25. AddGradients(grad_inputs_provided, "gradients", inputs, 2, outputs, 1,
  26. grad_outputs);
  27. EXPECT_EQ(TF_OK, TF_GetCode(s_));
  28. // Compare that the graphs match.
  29. GraphDef expected_gdef;
  30. GraphDef gdef;
  31. EXPECT_TRUE(GetGraphDef(expected_graph_, out expected_gdef));
  32. EXPECT_TRUE(GetGraphDef(graph_, out gdef));
  33. // Assert.IsTrue(expected_gdef.ToString().Equals(gdef.ToString()));
  34. // Compare that the output of the gradients of both graphs match.
  35. RunGraphsAndCompareOutputs(grad_outputs, expected_grad_outputs);
  36. }
  37. private bool GetGraphDef(Graph graph, out GraphDef graph_def)
  38. {
  39. graph_def = null;
  40. using (var s = new Status())
  41. {
  42. using (var buffer = new Buffer())
  43. {
  44. c_api.TF_GraphToGraphDef(graph, buffer.Handle, s.Handle);
  45. bool ret = TF_GetCode(s) == TF_OK;
  46. EXPECT_EQ(TF_OK, TF_GetCode(s));
  47. if (ret)
  48. graph_def = GraphDef.Parser.ParseFrom(buffer.DangerousMemoryBlock.Stream());
  49. return ret;
  50. }
  51. }
  52. }
  53. private void RunGraphsAndCompareOutputs(TF_Output[] grad_outputs, TF_Output[] expected_grad_outputs)
  54. {
  55. var csession = new CSession(graph_, s_);
  56. var expected_csession = new CSession(expected_graph_, s_);
  57. var grad_outputs_vec = grad_outputs;
  58. csession.SetOutputs(grad_outputs_vec);
  59. csession.Run(s_);
  60. ASSERT_EQ(TF_OK, TF_GetCode(s_));
  61. var out0 = csession.output_tensor(0);
  62. var out1 = csession.output_tensor(1);
  63. var expected_grad_outputs_vec = expected_grad_outputs;
  64. expected_csession.SetOutputs(expected_grad_outputs_vec);
  65. expected_csession.Run(s_);
  66. ASSERT_EQ(TF_OK, TF_GetCode(s_));
  67. var expected_out0 = expected_csession.output_tensor(0);
  68. var expected_out1 = expected_csession.output_tensor(1);
  69. //CompareTensors(out0, expected_out0);
  70. //CompareTensors(out1, expected_out1);
  71. }
  72. /*void TestGradientsError(bool grad_inputs_provided)
  73. {
  74. var inputs = new TF_Output[1];
  75. var outputs = new TF_Output[1];
  76. var grad_outputs = new TF_Output[1];
  77. BuildErrorGraph(inputs, outputs);
  78. AddGradients(grad_inputs_provided, nullptr, inputs, 1, outputs, 1,
  79. grad_outputs);
  80. string expected_msg =
  81. "No gradient defined for op: TestOpWithNoGradient. Please see "
  82. "https://www.tensorflow.org/code/"
  83. "tensorflow/cc/gradients/README.md"
  84. " for instructions on how to add C++ gradients.";
  85. EXPECT_EQ(expected_msg, TF_Message(s_));
  86. }*/
  87. private void AddGradients(bool grad_inputs_provided, string prefix, TF_Output[] inputs, int ninputs,
  88. TF_Output[] outputs, int noutputs, TF_Output[] grad_outputs)
  89. {
  90. if (grad_inputs_provided)
  91. {
  92. var grad_inputs = new TF_Output[1];
  93. float[] grad_inputs_val = { 1.0f, 1.0f, 1.0f, 1.0f };
  94. var grad_inputs_op = FloatConst2x2(graph_, s_, grad_inputs_val, "GradInputs");
  95. grad_inputs[0] = new TF_Output(grad_inputs_op, 0);
  96. IntPtr[] handles = new IntPtr[2] { IntPtr.Zero, IntPtr.Zero };
  97. c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
  98. ninputs, grad_inputs, s_.Handle, handles);
  99. var op = new Operation(handles[0]);
  100. }
  101. else
  102. {
  103. //c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
  104. //ninputs, null, s_, grad_outputs);
  105. }
  106. }
  107. private void BuildSuccessGraph(TF_Output[] inputs, TF_Output[] outputs)
  108. {
  109. // Construct the following graph:
  110. // |
  111. // z|
  112. // |
  113. // MatMul
  114. // / \
  115. // ^ ^
  116. // | |
  117. // x| y|
  118. // | |
  119. // | |
  120. // Const_0 Const_1
  121. //
  122. var const0_val = new float[] { 1.0f, 2.0f, 3.0f, 4.0f };
  123. var const1_val = new float[] { 1.0f, 0.0f, 0.0f, 1.0f };
  124. var const0 = FloatConst2x2(graph_, s_, const0_val, "Const_0");
  125. var const1 = FloatConst2x2(graph_, s_, const1_val, "Const_1");
  126. var matmul = MatMul(graph_, s_, const0, const1, "MatMul");
  127. inputs[0] = new TF_Output(const0, 0);
  128. inputs[1] = new TF_Output(const1, 0);
  129. outputs[0] = new TF_Output(matmul, 0);
  130. EXPECT_EQ(TF_OK, TF_GetCode(s_));
  131. }
  132. private void BuildExpectedGraph(bool grad_inputs_provided, TF_Output[] expected_grad_outputs)
  133. {
  134. // The expected graph looks like this if grad_inputs_provided.
  135. // If grad_inputs_provided is false, Const_0 will be a OnesLike op.
  136. // ^ ^
  137. // dy| dx| // MatMul Gradient Graph
  138. // | |
  139. // MatMul_2 MatMul_1
  140. // ^ ^ ^ ^
  141. // | |----------| |
  142. // | ^ |
  143. // | dz| |
  144. // | | |
  145. // | Const_3 |
  146. // | |
  147. // | ^ |
  148. // | z| | // MatMul Forward Graph
  149. // | | |
  150. // | MatMul |
  151. // | / \ |
  152. // | ^ ^ |
  153. // | | | |
  154. // |---x| y|----|
  155. // | |
  156. // | |
  157. // Const_0 Const_1
  158. //
  159. float[] const0_val = { 1.0f, 2.0f, 3.0f, 4.0f };
  160. float[] const1_val = { 1.0f, 0.0f, 0.0f, 1.0f };
  161. var const0 = FloatConst2x2(expected_graph_, s_, const0_val, "Const_0");
  162. var const1 = FloatConst2x2(expected_graph_, s_, const1_val, "Const_1");
  163. var matmul = MatMul(expected_graph_, s_, const0, const1, "MatMul");
  164. Operation const3;
  165. if (grad_inputs_provided)
  166. {
  167. float[] const3_val = { 1.0f, 1.0f, 1.0f, 1.0f };
  168. const3 = FloatConst2x2(expected_graph_, s_, const3_val, "GradInputs");
  169. }
  170. else
  171. {
  172. const3 = OnesLike(expected_graph_, s_, matmul, "gradients/OnesLike");
  173. }
  174. var matmul1 = MatMul(expected_graph_, s_, const3, const1,
  175. "gradients/MatMul", false, true);
  176. var matmul2 = MatMul(expected_graph_, s_, const0, const3,
  177. "gradients/MatMul_1", true, false);
  178. expected_grad_outputs[0] = new TF_Output(matmul1, 0);
  179. expected_grad_outputs[1] = new TF_Output(matmul2, 0);
  180. }
  181. private Operation OnesLike(Graph graph, Status s, Operation input, string name)
  182. {
  183. var desc = TF_NewOperation(graph, "OnesLike", name);
  184. TF_AddInput(desc, new TF_Output(input, 0));
  185. var op = TF_FinishOperation(desc, s);
  186. EXPECT_EQ(TF_OK, TF_GetCode(s));
  187. return op;
  188. }
  189. private Operation FloatConst2x2(Graph graph, Status s, float[] values, string name)
  190. {
  191. var tensor = FloatTensor2x2(values);
  192. var desc = TF_NewOperation(graph, "Const", name);
  193. TF_SetAttrTensor(desc, "value", tensor, s);
  194. if (TF_GetCode(s) != TF_OK) return IntPtr.Zero;
  195. TF_SetAttrType(desc, "dtype", TF_FLOAT);
  196. var op = TF_FinishOperation(desc, s);
  197. EXPECT_EQ(TF_OK, TF_GetCode(s));
  198. return op;
  199. }
  200. private Tensor FloatTensor2x2(float[] values)
  201. {
  202. //long[] dims = { 2, 2 };
  203. //Tensor t = c_api.TF_AllocateTensor(TF_FLOAT, dims, 2, sizeof(float) * 4);
  204. //Marshal.Copy(values, 0, t, 4);
  205. Tensor t = new Tensor(new NDArray(values).reshape(2, 2));
  206. return t;
  207. }
  208. private Operation MatMul(Graph graph, Status s, Operation l, Operation r, string name,
  209. bool transpose_a = false, bool transpose_b = false)
  210. {
  211. var desc = TF_NewOperation(graph, "MatMul", name);
  212. if (transpose_a)
  213. {
  214. TF_SetAttrBool(desc, "transpose_a", true);
  215. }
  216. if (transpose_b)
  217. {
  218. TF_SetAttrBool(desc, "transpose_b", true);
  219. }
  220. TF_AddInput(desc, new TF_Output(l, 0));
  221. TF_AddInput(desc, new TF_Output(r, 0));
  222. var op = TF_FinishOperation(desc, s);
  223. EXPECT_EQ(TF_OK, TF_GetCode(s));
  224. return op;
  225. }
  226. [TestMethod]
  227. public void Gradients_GradInputs()
  228. {
  229. //TestGradientsSuccess(true);
  230. }
  231. [TestMethod]
  232. public void Gradients_NoGradInputs()
  233. {
  234. //TestGradientsSuccess(false);
  235. }
  236. [TestMethod]
  237. public void OpWithNoGradientRegistered_GradInputs()
  238. {
  239. //TestGradientsError(true);
  240. }
  241. [TestMethod]
  242. public void OpWithNoGradientRegistered_NoGradInputs()
  243. {
  244. //TestGradientsError(false);
  245. }
  246. public void Dispose()
  247. {
  248. graph_.Dispose();
  249. expected_graph_.Dispose();
  250. s_.Dispose();
  251. }
  252. }
  253. }