You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ObjectDetection.cs 6.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. using Newtonsoft.Json;
  2. using NumSharp;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.IO;
  6. using System.Text;
  7. using Tensorflow;
  8. using TensorFlowNET.Examples.Utility;
  9. using System.Drawing;
  10. using System.Drawing.Drawing2D;
  11. using System.Linq;
  12. namespace TensorFlowNET.Examples
  13. {
  14. public class ObjectDetection : Python, IExample
  15. {
  16. public int Priority => 7;
  17. public bool Enabled { get; set; } = true;
  18. public string Name => "Image Recognition";
  19. public float MIN_SCORE = 0.5f;
  20. string modelDir = "ssd_mobilenet_v1_coco_2018_01_28";
  21. string imageDir = "images";
  22. string pbFile = "frozen_inference_graph.pb";
  23. string labelFile = "mscoco_label_map.pbtxt";
  24. string picFile = "input.jpg";
  25. public bool Run()
  26. {
  27. //buildOutputImage(null);
  28. // read in the input image
  29. var imgArr = ReadTensorFromImageFile(Path.Join(imageDir, "input.jpg"));
  30. var graph = new Graph().as_default();
  31. graph.Import(Path.Join(modelDir, pbFile));
  32. var tensorNum = graph.OperationByName("num_detections").outputs[0];
  33. var tensorBoxes = graph.OperationByName("detection_boxes").outputs[0];
  34. var tensorScores = graph.OperationByName("detection_scores").outputs[0];
  35. var tensorClasses = graph.OperationByName("detection_classes").outputs[0];
  36. var imgTensor = graph.OperationByName("image_tensor").outputs[0];
  37. Tensor[] outTensorArr = new Tensor[] { tensorNum, tensorBoxes, tensorScores, tensorClasses };
  38. with(tf.Session(graph), sess =>
  39. {
  40. var results = sess.run(outTensorArr, new FeedItem(imgTensor, imgArr));
  41. NDArray[] resultArr = results.Data<NDArray>();
  42. buildOutputImage(resultArr);
  43. });
  44. return true;
  45. }
  46. public void PrepareData()
  47. {
  48. if (!Directory.Exists(modelDir))
  49. Directory.CreateDirectory(modelDir);
  50. if (!File.Exists(Path.Join(modelDir, "ssd_mobilenet_v1_coco.tar.gz")))
  51. {
  52. // get model file
  53. string url = "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz";
  54. Utility.Web.Download(url, modelDir, "ssd_mobilenet_v1_coco.tar.gz");
  55. }
  56. if (!File.Exists(Path.Join(modelDir, "frozen_inference_graph.pb")))
  57. {
  58. Utility.Compress.ExtractTGZ(Path.Join(modelDir, "ssd_mobilenet_v1_coco.tar.gz"), "./");
  59. }
  60. // download sample picture
  61. if (!Directory.Exists(imageDir))
  62. Directory.CreateDirectory(imageDir);
  63. if (!File.Exists(Path.Join(imageDir, "input.jpg")))
  64. {
  65. string url = $"https://github.com/tensorflow/models/raw/master/research/object_detection/test_images/image2.jpg";
  66. Utility.Web.Download(url, imageDir, "input.jpg");
  67. }
  68. // download the pbtxt file
  69. if (!File.Exists(Path.Join(modelDir, "mscoco_label_map.pbtxt")))
  70. {
  71. string url = $"https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt";
  72. Utility.Web.Download(url, modelDir, "mscoco_label_map.pbtxt");
  73. }
  74. }
  75. private NDArray ReadTensorFromImageFile(string file_name)
  76. {
  77. return with(tf.Graph().as_default(), graph =>
  78. {
  79. var file_reader = tf.read_file(file_name, "file_reader");
  80. var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: 3, name: "DecodeJpeg");
  81. var casted = tf.cast(decodeJpeg, TF_DataType.TF_UINT8);
  82. var dims_expander = tf.expand_dims(casted, 0);
  83. return with(tf.Session(graph), sess => sess.run(dims_expander));
  84. });
  85. }
  86. private void buildOutputImage(NDArray[] resultArr)
  87. {
  88. // get pbtxt items
  89. PbtxtItems pbTxtItems = PbtxtParser.ParsePbtxtFile(Path.Join(modelDir, "mscoco_label_map.pbtxt"));
  90. // get bitmap
  91. Bitmap bitmap = new Bitmap(Path.Join(imageDir, "input.jpg"));
  92. float[] scores = resultArr[2].Data<float>();
  93. for (int i=0; i<scores.Length; i++)
  94. {
  95. float score = scores[i];
  96. if (score > MIN_SCORE)
  97. {
  98. //var boxes = resultArr[1].Data<float[,,]>();
  99. float[] boxes = resultArr[1].Data<float>();
  100. float top = boxes[i * 4] * bitmap.Height;
  101. float left = boxes[i * 4 + 1] * bitmap.Width;
  102. float bottom = boxes[i * 4 + 2] * bitmap.Height;
  103. float right = boxes[i * 4 + 3] * bitmap.Width;
  104. Rectangle rect = new Rectangle()
  105. {
  106. X = (int)left,
  107. Y = (int)top,
  108. Width = (int)(right - left),
  109. Height = (int)(bottom - top)
  110. };
  111. float[] ids = resultArr[3].Data<float>();
  112. string name = pbTxtItems.items.Where(w => w.id == (int)ids[i]).Select(s=>s.display_name).FirstOrDefault();
  113. drawObjectOnBitmap(bitmap, rect, score, name);
  114. }
  115. }
  116. bitmap.Save(Path.Join(imageDir, "output.jpg"));
  117. }
  118. private void drawObjectOnBitmap(Bitmap bmp, Rectangle rect, float score, string name)
  119. {
  120. using (Graphics graphic = Graphics.FromImage(bmp))
  121. {
  122. graphic.SmoothingMode = SmoothingMode.AntiAlias;
  123. using (Pen pen = new Pen(Color.Red, 2))
  124. {
  125. graphic.DrawRectangle(pen, rect);
  126. Point p = new Point(rect.Right + 5, rect.Top + 5);
  127. string text = string.Format("{0}:{1}%", name, (int)(score * 100));
  128. graphic.DrawString(text, new Font("Verdana", 8), Brushes.Red, p);
  129. }
  130. }
  131. }
  132. }
  133. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。