You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

RetrainImageClassifier.cs 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692
  1. using Google.Protobuf;
  2. using NumSharp;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.Diagnostics;
  6. using System.Drawing;
  7. using System.IO;
  8. using System.Linq;
  9. using System.Text;
  10. using Tensorflow;
  11. using TensorFlowNET.Examples.Utility;
  12. using static Tensorflow.Python;
  13. using Console = Colorful.Console;
  14. namespace TensorFlowNET.Examples.ImageProcess
  15. {
  16. /// <summary>
  17. /// In this tutorial, we will reuse the feature extraction capabilities from powerful image classifiers trained on ImageNet
  18. /// and simply train a new classification layer on top. Transfer learning is a technique that shortcuts much of this
  19. /// by taking a piece of a model that has already been trained on a related task and reusing it in a new model.
  20. ///
  21. /// https://www.tensorflow.org/hub/tutorials/image_retraining
  22. /// </summary>
  23. public class RetrainImageClassifier : IExample
  24. {
  25. public int Priority => 16;
  26. public bool Enabled { get; set; } = true;
  27. public bool IsImportingGraph { get; set; } = true;
  28. public string Name => "Retrain Image Classifier";
  29. const string data_dir = "retrain_images";
  30. string summaries_dir = Path.Join(data_dir, "retrain_logs");
  31. string image_dir = Path.Join(data_dir, "flower_photos");
  32. string bottleneck_dir = Path.Join(data_dir, "bottleneck");
  33. string output_graph = Path.Join(data_dir, "output_graph.pb");
  34. string output_labels = Path.Join(data_dir, "output_labels.txt");
  35. // The location where variable checkpoints will be stored.
  36. string CHECKPOINT_NAME = Path.Join(data_dir, "_retrain_checkpoint");
  37. string tfhub_module = "https://tfhub.dev/google/imagenet/inception_v3/feature_vector/3";
  38. string final_tensor_name = "final_result";
  39. float testing_percentage = 0.1f;
  40. float validation_percentage = 0.1f;
  41. float learning_rate = 0.01f;
  42. Tensor resized_image_tensor;
  43. Dictionary<string, Dictionary<string, string[]>> image_lists;
  44. int how_many_training_steps = 100;
  45. int eval_step_interval = 10;
  46. int train_batch_size = 100;
  47. int test_batch_size = -1;
  48. int validation_batch_size = 100;
  49. int intermediate_store_frequency = 0;
  50. int class_count = 0;
  51. const int MAX_NUM_IMAGES_PER_CLASS = 134217727;
  52. Operation train_step;
  53. Tensor final_tensor;
  54. Tensor bottleneck_input;
  55. Tensor cross_entropy;
  56. Tensor ground_truth_input;
  57. public bool Run()
  58. {
  59. PrepareData();
  60. // Set up the pre-trained graph.
  61. var (graph, bottleneck_tensor, resized_image_tensor, wants_quantization) =
  62. create_module_graph();
  63. // Add the new layer that we'll be training.
  64. with(graph.as_default(), delegate
  65. {
  66. (train_step, cross_entropy, bottleneck_input,
  67. ground_truth_input, final_tensor) = add_final_retrain_ops(
  68. class_count, final_tensor_name, bottleneck_tensor,
  69. wants_quantization, is_training: true);
  70. });
  71. var sw = new Stopwatch();
  72. return with(tf.Session(graph), sess =>
  73. {
  74. // Initialize all weights: for the module to their pretrained values,
  75. // and for the newly added retraining layer to random initial values.
  76. var init = tf.global_variables_initializer();
  77. sess.run(init);
  78. var (jpeg_data_tensor, decoded_image_tensor) = add_jpeg_decoding();
  79. // We'll make sure we've calculated the 'bottleneck' image summaries and
  80. // cached them on disk.
  81. cache_bottlenecks(sess, image_lists, image_dir,
  82. bottleneck_dir, jpeg_data_tensor,
  83. decoded_image_tensor, resized_image_tensor,
  84. bottleneck_tensor, tfhub_module);
  85. // Create the operations we need to evaluate the accuracy of our new layer.
  86. var (evaluation_step, _) = add_evaluation_step(final_tensor, ground_truth_input);
  87. // Merge all the summaries and write them out to the summaries_dir
  88. var merged = tf.summary.merge_all();
  89. var train_writer = tf.summary.FileWriter(summaries_dir + "/train", sess.graph);
  90. var validation_writer = tf.summary.FileWriter(summaries_dir + "/validation", sess.graph);
  91. // Create a train saver that is used to restore values into an eval graph
  92. // when exporting models.
  93. var train_saver = tf.train.Saver();
  94. sw.Restart();
  95. for (int i = 0; i < how_many_training_steps; i++)
  96. {
  97. var (train_bottlenecks, train_ground_truth, _) = get_random_cached_bottlenecks(
  98. sess, image_lists, train_batch_size, "training",
  99. bottleneck_dir, image_dir, jpeg_data_tensor,
  100. decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
  101. tfhub_module);
  102. // Feed the bottlenecks and ground truth into the graph, and run a training
  103. // step. Capture training summaries for TensorBoard with the `merged` op.
  104. var results = sess.run(
  105. new ITensorOrOperation[] { merged, train_step },
  106. new FeedItem(bottleneck_input, train_bottlenecks),
  107. new FeedItem(ground_truth_input, train_ground_truth));
  108. var train_summary = results[0];
  109. // TODO
  110. train_writer.add_summary(train_summary, i);
  111. // Every so often, print out how well the graph is training.
  112. bool is_last_step = (i + 1 == how_many_training_steps);
  113. if ((i % eval_step_interval) == 0 || is_last_step)
  114. {
  115. results = sess.run(
  116. new Tensor[] { evaluation_step, cross_entropy },
  117. new FeedItem(bottleneck_input, train_bottlenecks),
  118. new FeedItem(ground_truth_input, train_ground_truth));
  119. (float train_accuracy, float cross_entropy_value) = (results[0], results[1]);
  120. print($"{DateTime.Now}: Step {i + 1}: Train accuracy = {train_accuracy * 100}%, Cross entropy = {cross_entropy_value.ToString("G4")}");
  121. var (validation_bottlenecks, validation_ground_truth, _) = get_random_cached_bottlenecks(
  122. sess, image_lists, validation_batch_size, "validation",
  123. bottleneck_dir, image_dir, jpeg_data_tensor,
  124. decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
  125. tfhub_module);
  126. // Run a validation step and capture training summaries for TensorBoard
  127. // with the `merged` op.
  128. results = sess.run(new Tensor[] { merged, evaluation_step },
  129. new FeedItem(bottleneck_input, validation_bottlenecks),
  130. new FeedItem(ground_truth_input, validation_ground_truth));
  131. (string validation_summary, float validation_accuracy) = (results[0], results[1]);
  132. validation_writer.add_summary(validation_summary, i);
  133. print($"{DateTime.Now}: Step {i + 1}: Validation accuracy = {validation_accuracy * 100}% (N={len(validation_bottlenecks)}) {sw.ElapsedMilliseconds}ms");
  134. sw.Restart();
  135. }
  136. // Store intermediate results
  137. int intermediate_frequency = intermediate_store_frequency;
  138. if (intermediate_frequency > 0 && i % intermediate_frequency == 0 && i > 0)
  139. {
  140. }
  141. }
  142. // After training is complete, force one last save of the train checkpoint.
  143. train_saver.save(sess, CHECKPOINT_NAME);
  144. // We've completed all our training, so run a final test evaluation on
  145. // some new images we haven't used before.
  146. var (test_accuracy, predictions) = run_final_eval(sess, null, class_count, image_lists,
  147. jpeg_data_tensor, decoded_image_tensor, resized_image_tensor,
  148. bottleneck_tensor);
  149. // Write out the trained graph and labels with the weights stored as
  150. // constants.
  151. print($"Save final result to : {output_graph}");
  152. save_graph_to_file(output_graph, class_count);
  153. File.WriteAllText(output_labels, string.Join("\n", image_lists.Keys));
  154. return test_accuracy > 0.75f;
  155. });
  156. }
  157. /// <summary>
  158. /// Runs a final evaluation on an eval graph using the test data set.
  159. /// </summary>
  160. /// <param name="train_session"></param>
  161. /// <param name="module_spec"></param>
  162. /// <param name="class_count"></param>
  163. /// <param name="image_lists"></param>
  164. /// <param name="jpeg_data_tensor"></param>
  165. /// <param name="decoded_image_tensor"></param>
  166. /// <param name="resized_image_tensor"></param>
  167. /// <param name="bottleneck_tensor"></param>
  168. private (float, NDArray) run_final_eval(Session train_session, object module_spec, int class_count,
  169. Dictionary<string, Dictionary<string, string[]>> image_lists,
  170. Tensor jpeg_data_tensor, Tensor decoded_image_tensor,
  171. Tensor resized_image_tensor, Tensor bottleneck_tensor)
  172. {
  173. var (test_bottlenecks, test_ground_truth, test_filenames) = get_random_cached_bottlenecks(train_session, image_lists,
  174. test_batch_size, "testing", bottleneck_dir, image_dir, jpeg_data_tensor,
  175. decoded_image_tensor, resized_image_tensor, bottleneck_tensor, tfhub_module);
  176. var (eval_session, _, bottleneck_input, ground_truth_input, evaluation_step,
  177. prediction) = build_eval_session(class_count);
  178. var results = eval_session.run(new Tensor[] { evaluation_step, prediction },
  179. new FeedItem(bottleneck_input, test_bottlenecks),
  180. new FeedItem(ground_truth_input, test_ground_truth));
  181. print($"final test accuracy: {((float)results[0] * 100).ToString("G4")}% (N={len(test_bottlenecks)})");
  182. return (results[0], results[1]);
  183. }
  184. private (Session, Tensor, Tensor, Tensor, Tensor, Tensor)
  185. build_eval_session(int class_count)
  186. {
  187. // If quantized, we need to create the correct eval graph for exporting.
  188. var (eval_graph, bottleneck_tensor, resized_input_tensor, wants_quantization) = create_module_graph();
  189. var eval_sess = tf.Session(graph: eval_graph);
  190. Tensor evaluation_step = null;
  191. Tensor prediction = null;
  192. with(eval_graph.as_default(), graph =>
  193. {
  194. // Add the new layer for exporting.
  195. var (_, _, bottleneck_input, ground_truth_input, final_tensor) =
  196. add_final_retrain_ops(class_count, final_tensor_name, bottleneck_tensor,
  197. wants_quantization, is_training: false);
  198. // Now we need to restore the values from the training graph to the eval
  199. // graph.
  200. tf.train.Saver().restore(eval_sess, CHECKPOINT_NAME);
  201. (evaluation_step, prediction) = add_evaluation_step(final_tensor,
  202. ground_truth_input);
  203. });
  204. return (eval_sess, resized_input_tensor, bottleneck_input, ground_truth_input,
  205. evaluation_step, prediction);
  206. }
  207. /// <summary>
  208. /// Adds a new softmax and fully-connected layer for training and eval.
  209. ///
  210. /// We need to retrain the top layer to identify our new classes, so this function
  211. /// adds the right operations to the graph, along with some variables to hold the
  212. /// weights, and then sets up all the gradients for the backward pass.
  213. ///
  214. /// The set up for the softmax and fully-connected layers is based on:
  215. /// https://www.tensorflow.org/tutorials/mnist/beginners/index.html
  216. /// </summary>
  217. /// <param name="class_count"></param>
  218. /// <param name="final_tensor_name"></param>
  219. /// <param name="bottleneck_tensor"></param>
  220. /// <param name="quantize_layer"></param>
  221. /// <param name="is_training"></param>
  222. /// <returns></returns>
  223. private (Operation, Tensor, Tensor, Tensor, Tensor) add_final_retrain_ops(int class_count, string final_tensor_name,
  224. Tensor bottleneck_tensor, bool quantize_layer, bool is_training)
  225. {
  226. var (batch_size, bottleneck_tensor_size) = (bottleneck_tensor.GetShape().Dimensions[0], bottleneck_tensor.GetShape().Dimensions[1]);
  227. with(tf.name_scope("input"), scope =>
  228. {
  229. bottleneck_input = tf.placeholder_with_default(
  230. bottleneck_tensor,
  231. shape: bottleneck_tensor.GetShape().Dimensions,
  232. name: "BottleneckInputPlaceholder");
  233. ground_truth_input = tf.placeholder(tf.int64, new TensorShape(batch_size), name: "GroundTruthInput");
  234. });
  235. // Organizing the following ops so they are easier to see in TensorBoard.
  236. string layer_name = "final_retrain_ops";
  237. Tensor logits = null;
  238. with(tf.name_scope(layer_name), scope =>
  239. {
  240. RefVariable layer_weights = null;
  241. with(tf.name_scope("weights"), delegate
  242. {
  243. var initial_value = tf.truncated_normal(new int[] { bottleneck_tensor_size, class_count }, stddev: 0.001f);
  244. layer_weights = tf.Variable(initial_value, name: "final_weights");
  245. variable_summaries(layer_weights);
  246. });
  247. RefVariable layer_biases = null;
  248. with(tf.name_scope("biases"), delegate
  249. {
  250. layer_biases = tf.Variable(tf.zeros((class_count)), name: "final_biases");
  251. variable_summaries(layer_biases);
  252. });
  253. with(tf.name_scope("Wx_plus_b"), delegate
  254. {
  255. logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases;
  256. tf.summary.histogram("pre_activations", logits);
  257. });
  258. });
  259. final_tensor = tf.nn.softmax(logits, name: final_tensor_name);
  260. // The tf.contrib.quantize functions rewrite the graph in place for
  261. // quantization. The imported model graph has already been rewritten, so upon
  262. // calling these rewrites, only the newly added final layer will be
  263. // transformed.
  264. if (quantize_layer)
  265. {
  266. throw new NotImplementedException("quantize_layer");
  267. /*if (is_training)
  268. tf.contrib.quantize.create_training_graph();
  269. else
  270. tf.contrib.quantize.create_eval_graph();*/
  271. }
  272. tf.summary.histogram("activations", final_tensor);
  273. // If this is an eval graph, we don't need to add loss ops or an optimizer.
  274. if (!is_training)
  275. return (null, null, bottleneck_input, ground_truth_input, final_tensor);
  276. Tensor cross_entropy_mean = null;
  277. with(tf.name_scope("cross_entropy"), delegate
  278. {
  279. cross_entropy_mean = tf.losses.sparse_softmax_cross_entropy(
  280. labels: ground_truth_input, logits: logits);
  281. });
  282. tf.summary.scalar("cross_entropy", cross_entropy_mean);
  283. with(tf.name_scope("train"), delegate
  284. {
  285. var optimizer = tf.train.GradientDescentOptimizer(learning_rate);
  286. train_step = optimizer.minimize(cross_entropy_mean);
  287. });
  288. return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
  289. final_tensor);
  290. }
  291. private void variable_summaries(RefVariable var)
  292. {
  293. with(tf.name_scope("summaries"), delegate
  294. {
  295. var mean = tf.reduce_mean(var);
  296. tf.summary.scalar("mean", mean);
  297. Tensor stddev = null;
  298. with(tf.name_scope("stddev"), delegate {
  299. stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)));
  300. });
  301. tf.summary.scalar("stddev", stddev);
  302. tf.summary.scalar("max", tf.reduce_max(var));
  303. tf.summary.scalar("min", tf.reduce_min(var));
  304. tf.summary.histogram("histogram", var);
  305. });
  306. }
  307. private (Graph, Tensor, Tensor, bool) create_module_graph()
  308. {
  309. var (height, width) = (299, 299);
  310. return with(tf.Graph().as_default(), graph =>
  311. {
  312. tf.train.import_meta_graph("graph/InceptionV3.meta");
  313. Tensor resized_input_tensor = graph.OperationByName("Placeholder"); //tf.placeholder(tf.float32, new TensorShape(-1, height, width, 3));
  314. // var m = hub.Module(module_spec);
  315. Tensor bottleneck_tensor = graph.OperationByName("module_apply_default/hub_output/feature_vector/SpatialSqueeze");// m(resized_input_tensor);
  316. var wants_quantization = false;
  317. return (graph, bottleneck_tensor, resized_input_tensor, wants_quantization);
  318. });
  319. }
  320. private (NDArray, long[], string[]) get_random_cached_bottlenecks(Session sess, Dictionary<string, Dictionary<string, string[]>> image_lists,
  321. int how_many, string category, string bottleneck_dir, string image_dir,
  322. Tensor jpeg_data_tensor, Tensor decoded_image_tensor, Tensor resized_input_tensor,
  323. Tensor bottleneck_tensor, string module_name)
  324. {
  325. var bottlenecks = new List<float[]>();
  326. var ground_truths = new List<long>();
  327. var filenames = new List<string>();
  328. class_count = image_lists.Keys.Count;
  329. if (how_many >= 0)
  330. {
  331. // Retrieve a random sample of bottlenecks.
  332. foreach (var unused_i in range(how_many))
  333. {
  334. int label_index = new Random().Next(class_count);
  335. string label_name = image_lists.Keys.ToArray()[label_index];
  336. int image_index = new Random().Next(MAX_NUM_IMAGES_PER_CLASS);
  337. string image_name = get_image_path(image_lists, label_name, image_index,
  338. image_dir, category);
  339. var bottleneck = get_or_create_bottleneck(
  340. sess, image_lists, label_name, image_index, image_dir, category,
  341. bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
  342. resized_input_tensor, bottleneck_tensor, module_name);
  343. bottlenecks.Add(bottleneck);
  344. ground_truths.Add(label_index);
  345. filenames.Add(image_name);
  346. }
  347. }
  348. else
  349. {
  350. // Retrieve all bottlenecks.
  351. foreach (var (label_index, label_name) in enumerate(image_lists.Keys.ToArray()))
  352. {
  353. foreach(var (image_index, image_name) in enumerate(image_lists[label_name][category]))
  354. {
  355. var bottleneck = get_or_create_bottleneck(
  356. sess, image_lists, label_name, image_index, image_dir, category,
  357. bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
  358. resized_input_tensor, bottleneck_tensor, module_name);
  359. bottlenecks.Add(bottleneck);
  360. ground_truths.Add(label_index);
  361. filenames.Add(image_name);
  362. }
  363. }
  364. }
  365. return (bottlenecks.ToArray(), ground_truths.ToArray(), filenames.ToArray());
  366. }
  367. /// <summary>
  368. /// Inserts the operations we need to evaluate the accuracy of our results.
  369. /// </summary>
  370. /// <param name="result_tensor"></param>
  371. /// <param name="ground_truth_tensor"></param>
  372. /// <returns></returns>
  373. private (Tensor, Tensor) add_evaluation_step(Tensor result_tensor, Tensor ground_truth_tensor)
  374. {
  375. Tensor evaluation_step = null, correct_prediction = null, prediction = null;
  376. with(tf.name_scope("accuracy"), scope =>
  377. {
  378. with(tf.name_scope("correct_prediction"), delegate
  379. {
  380. prediction = tf.argmax(result_tensor, 1);
  381. correct_prediction = tf.equal(prediction, ground_truth_tensor);
  382. });
  383. with(tf.name_scope("accuracy"), delegate
  384. {
  385. evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32));
  386. });
  387. });
  388. tf.summary.scalar("accuracy", evaluation_step);
  389. return (evaluation_step, prediction);
  390. }
  391. /// <summary>
  392. /// Ensures all the training, testing, and validation bottlenecks are cached.
  393. /// </summary>
  394. /// <param name="sess"></param>
  395. /// <param name="image_lists"></param>
  396. /// <param name="image_dir"></param>
  397. /// <param name="bottleneck_dir"></param>
  398. /// <param name="jpeg_data_tensor"></param>
  399. /// <param name="decoded_image_tensor"></param>
  400. /// <param name="resized_image_tensor"></param>
  401. /// <param name="bottleneck_tensor"></param>
  402. /// <param name="tfhub_module"></param>
  403. private void cache_bottlenecks(Session sess, Dictionary<string, Dictionary<string, string[]>> image_lists,
  404. string image_dir, string bottleneck_dir, Tensor jpeg_data_tensor, Tensor decoded_image_tensor,
  405. Tensor resized_input_tensor, Tensor bottleneck_tensor, string module_name)
  406. {
  407. int how_many_bottlenecks = 0;
  408. foreach(var (label_name, label_lists) in image_lists)
  409. {
  410. foreach(var category in new string[] { "training", "testing", "validation" })
  411. {
  412. var category_list = label_lists[category];
  413. foreach(var (index, unused_base_name) in enumerate(category_list))
  414. {
  415. get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category,
  416. bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
  417. resized_input_tensor, bottleneck_tensor, module_name);
  418. how_many_bottlenecks++;
  419. if (how_many_bottlenecks % 300 == 0)
  420. print($"{how_many_bottlenecks} bottleneck files created.");
  421. }
  422. }
  423. }
  424. }
  425. private float[] get_or_create_bottleneck(Session sess, Dictionary<string, Dictionary<string, string[]>> image_lists,
  426. string label_name, int index, string image_dir, string category, string bottleneck_dir,
  427. Tensor jpeg_data_tensor, Tensor decoded_image_tensor, Tensor resized_input_tensor,
  428. Tensor bottleneck_tensor, string module_name)
  429. {
  430. var label_lists = image_lists[label_name];
  431. var sub_dir_path = Path.Join(bottleneck_dir, label_name);
  432. Directory.CreateDirectory(sub_dir_path);
  433. string bottleneck_path = get_bottleneck_path(image_lists, label_name, index,
  434. bottleneck_dir, category, module_name);
  435. if (!File.Exists(bottleneck_path))
  436. create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
  437. image_dir, category, sess, jpeg_data_tensor,
  438. decoded_image_tensor, resized_input_tensor,
  439. bottleneck_tensor);
  440. var bottleneck_string = File.ReadAllText(bottleneck_path);
  441. var bottleneck_values = Array.ConvertAll(bottleneck_string.Split(','), x => float.Parse(x));
  442. return bottleneck_values;
  443. }
  444. private void create_bottleneck_file(string bottleneck_path, Dictionary<string, Dictionary<string, string[]>> image_lists,
  445. string label_name, int index, string image_dir, string category, Session sess,
  446. Tensor jpeg_data_tensor, Tensor decoded_image_tensor, Tensor resized_input_tensor, Tensor bottleneck_tensor)
  447. {
  448. // Create a single bottleneck file.
  449. print("Creating bottleneck at " + bottleneck_path);
  450. var image_path = get_image_path(image_lists, label_name, index, image_dir, category);
  451. if (!File.Exists(image_path))
  452. print($"File does not exist {image_path}");
  453. var image_data = File.ReadAllBytes(image_path);
  454. var bottleneck_values = run_bottleneck_on_image(
  455. sess, image_data, jpeg_data_tensor, decoded_image_tensor,
  456. resized_input_tensor, bottleneck_tensor);
  457. var values = bottleneck_values.Data<float>();
  458. var bottleneck_string = string.Join(",", values);
  459. File.WriteAllText(bottleneck_path, bottleneck_string);
  460. }
  461. /// <summary>
  462. /// Runs inference on an image to extract the 'bottleneck' summary layer.
  463. /// </summary>
  464. /// <param name="sess">Current active TensorFlow Session.</param>
  465. /// <param name="image_data">Data of raw JPEG data.</param>
  466. /// <param name="image_data_tensor">Input data layer in the graph.</param>
  467. /// <param name="decoded_image_tensor">Output of initial image resizing and preprocessing.</param>
  468. /// <param name="resized_input_tensor">The input node of the recognition graph.</param>
  469. /// <param name="bottleneck_tensor">Layer before the final softmax.</param>
  470. /// <returns></returns>
  471. private NDArray run_bottleneck_on_image(Session sess, byte[] image_data, Tensor image_data_tensor,
  472. Tensor decoded_image_tensor, Tensor resized_input_tensor, Tensor bottleneck_tensor)
  473. {
  474. // First decode the JPEG image, resize it, and rescale the pixel values.
  475. var resized_input_values = sess.run(decoded_image_tensor, new FeedItem(image_data_tensor, image_data));
  476. // Then run it through the recognition network.
  477. var bottleneck_values = sess.run(bottleneck_tensor, new FeedItem(resized_input_tensor, resized_input_values));
  478. bottleneck_values = np.squeeze(bottleneck_values);
  479. return bottleneck_values;
  480. }
  481. private string get_bottleneck_path(Dictionary<string, Dictionary<string, string[]>> image_lists, string label_name, int index,
  482. string bottleneck_dir, string category, string module_name)
  483. {
  484. module_name = (module_name.Replace("://", "~") // URL scheme.
  485. .Replace('/', '~') // URL and Unix paths.
  486. .Replace(':', '~').Replace('\\', '~')); // Windows paths.
  487. return get_image_path(image_lists, label_name, index, bottleneck_dir,
  488. category) + "_" + module_name + ".txt";
  489. }
  490. private string get_image_path(Dictionary<string, Dictionary<string, string[]>> image_lists, string label_name,
  491. int index, string image_dir, string category)
  492. {
  493. if (!image_lists.ContainsKey(label_name))
  494. print($"Label does not exist {label_name}");
  495. var label_lists = image_lists[label_name];
  496. if (!label_lists.ContainsKey(category))
  497. print($"Category does not exist {category}");
  498. var category_list = label_lists[category];
  499. if (category_list.Length == 0)
  500. print($"Label {label_name} has no images in the category {category}.");
  501. var mod_index = index % len(category_list);
  502. var base_name = category_list[mod_index].Split(Path.DirectorySeparatorChar).Last();
  503. var sub_dir = label_name;
  504. var full_path = Path.Join(image_dir, sub_dir, base_name);
  505. return full_path;
  506. }
  507. /// <summary>
  508. /// Saves an graph to file, creating a valid quantized one if necessary.
  509. /// </summary>
  510. /// <param name="graph_file_name"></param>
  511. /// <param name="class_count"></param>
  512. private void save_graph_to_file(string graph_file_name, int class_count)
  513. {
  514. var (sess, _, _, _, _, _) = build_eval_session(class_count);
  515. var graph = sess.graph;
  516. var output_graph_def = tf.graph_util.convert_variables_to_constants(
  517. sess, graph.as_graph_def(), new string[] { final_tensor_name });
  518. File.WriteAllBytes(graph_file_name, output_graph_def.ToByteArray());
  519. }
  520. public void PrepareData()
  521. {
  522. // get a set of images to teach the network about the new classes
  523. string fileName = "flower_photos.tgz";
  524. string url = $"http://download.tensorflow.org/example_images/{fileName}";
  525. Web.Download(url, data_dir, fileName);
  526. Compress.ExtractTGZ(Path.Join(data_dir, fileName), data_dir);
  527. // download graph meta data
  528. url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/InceptionV3.meta";
  529. Web.Download(url, "graph", "InceptionV3.meta");
  530. // download variables.data checkpoint file.
  531. url = "https://github.com/SciSharp/TensorFlow.NET/raw/master/data/tfhub_modules.zip";
  532. Web.Download(url, data_dir, "tfhub_modules.zip");
  533. Compress.UnZip(Path.Join(data_dir, "tfhub_modules.zip"), "tfhub_modules");
  534. // Prepare necessary directories that can be used during training
  535. Directory.CreateDirectory(summaries_dir);
  536. Directory.CreateDirectory(bottleneck_dir);
  537. // Look at the folder structure, and create lists of all the images.
  538. image_lists = create_image_lists();
  539. class_count = len(image_lists);
  540. if (class_count == 0)
  541. print($"No valid folders of images found at {image_dir}");
  542. if (class_count == 1)
  543. print("Only one valid folder of images found at " +
  544. image_dir +
  545. " - multiple classes are needed for classification.");
  546. }
  547. private (Tensor, Tensor) add_jpeg_decoding()
  548. {
  549. // height, width, depth
  550. var input_dim = (299, 299, 3);
  551. var jpeg_data = tf.placeholder(tf.chars, name: "DecodeJPGInput");
  552. var decoded_image = tf.image.decode_jpeg(jpeg_data, channels: input_dim.Item3);
  553. // Convert from full range of uint8 to range [0,1] of float32.
  554. var decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32);
  555. var decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0);
  556. var resize_shape = tf.stack(new int[] { input_dim.Item1, input_dim.Item2 });
  557. var resize_shape_as_int = tf.cast(resize_shape, dtype: tf.int32);
  558. var resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int);
  559. return (jpeg_data, resized_image);
  560. }
  561. /// <summary>
  562. /// Builds a list of training images from the file system.
  563. /// </summary>
  564. private Dictionary<string, Dictionary<string, string[]>> create_image_lists()
  565. {
  566. var sub_dirs = tf.gfile.Walk(image_dir)
  567. .Select(x => x.Item1)
  568. .OrderBy(x => x)
  569. .ToArray();
  570. var result = new Dictionary<string, Dictionary<string, string[]>>();
  571. foreach(var sub_dir in sub_dirs)
  572. {
  573. var dir_name = sub_dir.Split(Path.DirectorySeparatorChar).Last();
  574. print($"Looking for images in '{dir_name}'");
  575. var file_list = Directory.GetFiles(sub_dir);
  576. if (len(file_list) < 20)
  577. print($"WARNING: Folder has less than 20 images, which may cause issues.");
  578. var label_name = dir_name.ToLower();
  579. result[label_name] = new Dictionary<string, string[]>();
  580. int testing_count = (int)Math.Floor(file_list.Length * testing_percentage);
  581. int validation_count = (int)Math.Floor(file_list.Length * validation_percentage);
  582. result[label_name]["testing"] = file_list.Take(testing_count).ToArray();
  583. result[label_name]["validation"] = file_list.Skip(testing_count).Take(validation_count).ToArray();
  584. result[label_name]["training"] = file_list.Skip(testing_count + validation_count).ToArray();
  585. }
  586. return result;
  587. }
  588. public Graph ImportGraph()
  589. {
  590. throw new NotImplementedException();
  591. }
  592. public Graph BuildGraph()
  593. {
  594. throw new NotImplementedException();
  595. }
  596. public bool Train()
  597. {
  598. throw new NotImplementedException();
  599. }
  600. public bool Predict()
  601. {
  602. throw new NotImplementedException();
  603. }
  604. }
  605. }