You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

Layers.Convolution.Test.cs 6.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using Tensorflow.NumPy;
  3. using Tensorflow;
  4. using Tensorflow.Operations;
  5. using static Tensorflow.KerasApi;
  6. namespace TensorFlowNET.Keras.UnitTest
  7. {
  8. [TestClass]
  9. public class LayersConvolutionTest : EagerModeTestBase
  10. {
  11. [TestMethod]
  12. public void BasicConv1D()
  13. {
  14. var filters = 8;
  15. var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear");
  16. var x = np.arange(256.0f).reshape((8, 8, 4));
  17. var y = conv.Apply(x);
  18. Assert.AreEqual(y.shape, (8, 6, 8));
  19. Assert.AreEqual(filters, y.shape[2]);
  20. }
  21. [TestMethod]
  22. public void BasicConv1D_ksize()
  23. {
  24. var filters = 8;
  25. var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear");
  26. var x = np.arange(256.0f).reshape((8, 8, 4));
  27. var y = conv.Apply(x);
  28. Assert.AreEqual(3, y.shape.ndim);
  29. Assert.AreEqual(x.dims[0], y.shape[0]);
  30. Assert.AreEqual(x.dims[1] - 2, y.shape[1]);
  31. Assert.AreEqual(filters, y.shape[2]);
  32. }
  33. [TestMethod]
  34. public void BasicConv1D_ksize_same()
  35. {
  36. var filters = 8;
  37. var conv = keras.layers.Conv1D(filters, kernel_size: 3, padding: "same", activation: "linear");
  38. var x = np.arange(256.0f).reshape((8, 8, 4));
  39. var y = conv.Apply(x);
  40. Assert.AreEqual(3, y.shape.ndim);
  41. Assert.AreEqual(x.dims[0], y.shape[0]);
  42. Assert.AreEqual(x.dims[1], y.shape[1]);
  43. Assert.AreEqual(filters, y.shape[2]);
  44. }
  45. [TestMethod]
  46. public void BasicConv1D_ksize_strides()
  47. {
  48. var filters = 8;
  49. var conv = keras.layers.Conv1D(filters, kernel_size: 3, strides: 2, activation: "linear");
  50. var x = np.arange(256.0f).reshape((8, 8, 4));
  51. var y = conv.Apply(x);
  52. Assert.AreEqual(3, y.shape.ndim);
  53. Assert.AreEqual(x.dims[0], y.shape[0]);
  54. Assert.AreEqual(x.dims[1] - 5, y.shape[1]);
  55. Assert.AreEqual(filters, y.shape[2]);
  56. }
  57. [TestMethod]
  58. public void BasicConv1D_ksize_dilations()
  59. {
  60. var filters = 8;
  61. var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear");
  62. var x = np.arange(256.0f).reshape((8, 8, 4));
  63. var y = conv.Apply(x);
  64. Assert.AreEqual(3, y.shape.ndim);
  65. Assert.AreEqual(x.dims[0], y.shape[0]);
  66. Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
  67. Assert.AreEqual(filters, y.shape[2]);
  68. }
  69. [TestMethod]
  70. public void BasicConv1D_ksize_dilation_same()
  71. {
  72. var filters = 8;
  73. var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear");
  74. var x = np.arange(256.0f).reshape((8, 8, 4));
  75. var y = conv.Apply(x);
  76. Assert.AreEqual(3, y.shape.ndim);
  77. Assert.AreEqual(x.dims[0], y.shape[0]);
  78. Assert.AreEqual(x.dims[1], y.shape[1]);
  79. Assert.AreEqual(filters, y.shape[2]);
  80. }
  81. [TestMethod]
  82. public void BasicConv2D()
  83. {
  84. var filters = 8;
  85. var conv = keras.layers.Conv2D(filters, activation: "linear");
  86. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  87. var y = conv.Apply(x);
  88. Assert.AreEqual(4, y.shape.ndim);
  89. Assert.AreEqual(x.dims[0], y.shape[0]);
  90. Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
  91. Assert.AreEqual(x.dims[2] - 4, y.shape[2]);
  92. Assert.AreEqual(filters, y.shape[3]);
  93. }
  94. [TestMethod]
  95. public void BasicConv2D_ksize()
  96. {
  97. var filters = 8;
  98. var conv = keras.layers.Conv2D(filters, kernel_size: 3, activation: "linear");
  99. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  100. var y = conv.Apply(x);
  101. Assert.AreEqual(4, y.shape.ndim);
  102. Assert.AreEqual(x.dims[0], y.shape[0]);
  103. Assert.AreEqual(x.dims[1] - 2, y.shape[1]);
  104. Assert.AreEqual(x.dims[2] - 2, y.shape[2]);
  105. Assert.AreEqual(filters, y.shape[3]);
  106. }
  107. [TestMethod]
  108. public void BasicConv2D_ksize_same()
  109. {
  110. var filters = 8;
  111. var conv = keras.layers.Conv2D(filters, kernel_size: 3, padding: "same", activation: "linear");
  112. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  113. var y = conv.Apply(x);
  114. Assert.AreEqual(4, y.shape.ndim);
  115. Assert.AreEqual(x.dims[0], y.shape[0]);
  116. Assert.AreEqual(x.dims[1], y.shape[1]);
  117. Assert.AreEqual(x.dims[2], y.shape[2]);
  118. Assert.AreEqual(filters, y.shape[3]);
  119. }
  120. [TestMethod]
  121. public void BasicConv2D_ksize_strides()
  122. {
  123. var filters = 8;
  124. var conv = keras.layers.Conv2D(filters, kernel_size: 3, strides: 2, activation: "linear");
  125. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  126. var y = conv.Apply(x);
  127. Assert.AreEqual(4, y.shape.ndim);
  128. Assert.AreEqual(x.dims[0], y.shape[0]);
  129. Assert.AreEqual(x.dims[1] - 5, y.shape[1]);
  130. Assert.AreEqual(x.dims[2] - 5, y.shape[2]);
  131. Assert.AreEqual(filters, y.shape[3]);
  132. }
  133. [TestMethod]
  134. public void BasicConv2D_ksize_dilation()
  135. {
  136. var filters = 8;
  137. var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear");
  138. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  139. var y = conv.Apply(x);
  140. Assert.AreEqual(4, y.shape.ndim);
  141. Assert.AreEqual(x.dims[0], y.shape[0]);
  142. Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
  143. Assert.AreEqual(x.dims[2] - 4, y.shape[2]);
  144. Assert.AreEqual(filters, y.shape[3]);
  145. }
  146. [TestMethod]
  147. public void BasicConv2D_ksize_dilation_same()
  148. {
  149. var filters = 8;
  150. var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear");
  151. var x = np.arange(256.0f).reshape((1, 8, 8, 4));
  152. var y = conv.Apply(x);
  153. Assert.AreEqual(4, y.shape.ndim);
  154. Assert.AreEqual(x.dims[0], y.shape[0]);
  155. Assert.AreEqual(x.dims[1], y.shape[1]);
  156. Assert.AreEqual(x.dims[2], y.shape[2]);
  157. Assert.AreEqual(filters, y.shape[3]);
  158. }
  159. }
  160. }