You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

LogisticRegression.cs 5.9 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. using NumSharp;
  2. using System;
  3. using System.Collections.Generic;
  4. using System.IO;
  5. using System.Linq;
  6. using System.Text;
  7. using Tensorflow;
  8. using TensorFlowNET.Examples.Utility;
  9. namespace TensorFlowNET.Examples
  10. {
  11. /// <summary>
  12. /// A logistic regression learning algorithm example using TensorFlow library.
  13. /// This example is using the MNIST database of handwritten digits
  14. /// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py
  15. /// </summary>
  16. public class LogisticRegression : Python, IExample
  17. {
  18. public int Priority => 4;
  19. public bool Enabled { get; set; } = true;
  20. public string Name => "Logistic Regression";
  21. private float learning_rate = 0.01f;
  22. private int training_epochs = 10;
  23. private int batch_size = 100;
  24. private int display_step = 1;
  25. Datasets mnist;
  26. public bool Run()
  27. {
  28. PrepareData();
  29. // tf Graph Input
  30. var x = tf.placeholder(tf.float32, new TensorShape(-1, 784)); // mnist data image of shape 28*28=784
  31. var y = tf.placeholder(tf.float32, new TensorShape(-1, 10)); // 0-9 digits recognition => 10 classes
  32. // Set model weights
  33. var W = tf.Variable(tf.zeros(new Shape(784, 10)));
  34. var b = tf.Variable(tf.zeros(new Shape(10)));
  35. // Construct model
  36. var pred = tf.nn.softmax(tf.matmul(x, W) + b); // Softmax
  37. // Minimize error using cross entropy
  38. var cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices: 1));
  39. // Gradient Descent
  40. var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost);
  41. // Initialize the variables (i.e. assign their default value)
  42. var init = tf.global_variables_initializer();
  43. return with(tf.Session(), sess =>
  44. {
  45. // Run the initializer
  46. sess.run(init);
  47. // Training cycle
  48. foreach (var epoch in range(training_epochs))
  49. {
  50. var avg_cost = 0.0f;
  51. var total_batch = mnist.train.num_examples / batch_size;
  52. // Loop over all batches
  53. foreach (var i in range(total_batch))
  54. {
  55. var (batch_xs, batch_ys) = mnist.train.next_batch(batch_size);
  56. // Run optimization op (backprop) and cost op (to get loss value)
  57. var result = sess.run(new object[] { optimizer, cost },
  58. new FeedItem(x, batch_xs),
  59. new FeedItem(y, batch_ys));
  60. float c = result[1];
  61. // Compute average loss
  62. avg_cost += c / total_batch;
  63. }
  64. // Display logs per epoch step
  65. if ((epoch + 1) % display_step == 0)
  66. print($"Epoch: {(epoch + 1).ToString("D4")} cost= {avg_cost.ToString("G9")}");
  67. }
  68. print("Optimization Finished!");
  69. // SaveModel(sess);
  70. // Test model
  71. var correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1));
  72. // Calculate accuracy
  73. var accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32));
  74. float acc = accuracy.eval(new FeedItem(x, mnist.test.images), new FeedItem(y, mnist.test.labels));
  75. print($"Accuracy: {acc.ToString("F4")}");
  76. return acc > 0.9;
  77. });
  78. }
  79. public void PrepareData()
  80. {
  81. mnist = MnistDataSet.read_data_sets("mnist", one_hot: true);
  82. }
  83. public void SaveModel(Session sess)
  84. {
  85. var saver = tf.train.Saver();
  86. var save_path = saver.save(sess, "logistic_regression/model.ckpt");
  87. tf.train.write_graph(sess.graph, "logistic_regression", "model.pbtxt", as_text: true);
  88. FreezeGraph.freeze_graph(input_graph: "logistic_regression/model.pbtxt",
  89. input_saver: "",
  90. input_binary: false,
  91. input_checkpoint: "logistic_regression/model.ckpt",
  92. output_node_names: "Softmax",
  93. restore_op_name: "save/restore_all",
  94. filename_tensor_name: "save/Const:0",
  95. output_graph: "logistic_regression/model.pb",
  96. clear_devices: true,
  97. initializer_nodes: "");
  98. }
  99. public void Predict()
  100. {
  101. var graph = new Graph().as_default();
  102. graph.Import(Path.Join("logistic_regression", "model.pb"));
  103. with(tf.Session(graph), sess =>
  104. {
  105. // restoring the model
  106. // var saver = tf.train.import_meta_graph("logistic_regression/tensorflowModel.ckpt.meta");
  107. // saver.restore(sess, tf.train.latest_checkpoint('logistic_regression'));
  108. var pred = graph.OperationByName("Softmax");
  109. var output = pred.outputs[0];
  110. var x = graph.OperationByName("Placeholder");
  111. var input = x.outputs[0];
  112. // predict
  113. var (batch_xs, batch_ys) = mnist.train.next_batch(10);
  114. var results = sess.run(output, new FeedItem(input, batch_xs[np.arange(1)]));
  115. if (results.argmax() == (batch_ys[0] as NDArray).argmax())
  116. print("predicted OK!");
  117. else
  118. throw new ValueError("predict error, maybe 90% accuracy");
  119. });
  120. }
  121. }
  122. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。