You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

CApiGradientsTest.cs 11 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using NumSharp;
  3. using System;
  4. using Tensorflow;
  5. using Buffer = Tensorflow.Buffer;
  6. namespace TensorFlowNET.UnitTest
  7. {
  8. /// <summary>
  9. /// tensorflow\c\c_api_test.cc
  10. /// `class CApiGradientsTest`
  11. /// </summary>
  12. [TestClass]
  13. public class CApiGradientsTest : CApiTest, IDisposable
  14. {
  15. private Graph graph_ = new Graph();
  16. private Graph expected_graph_ = new Graph();
  17. private Status s_ = new Status();
  18. private void TestGradientsSuccess(bool grad_inputs_provided)
  19. {
  20. var inputs = new TF_Output[2];
  21. var outputs = new TF_Output[1];
  22. var grad_outputs = new TF_Output[2];
  23. var expected_grad_outputs = new TF_Output[2];
  24. BuildSuccessGraph(inputs, outputs);
  25. BuildExpectedGraph(grad_inputs_provided, expected_grad_outputs);
  26. AddGradients(grad_inputs_provided, "gradients", inputs, 2, outputs, 1,
  27. grad_outputs);
  28. EXPECT_EQ(TF_OK, TF_GetCode(s_));
  29. // Compare that the graphs match.
  30. GraphDef expected_gdef;
  31. GraphDef gdef;
  32. EXPECT_TRUE(GetGraphDef(expected_graph_, out expected_gdef));
  33. EXPECT_TRUE(GetGraphDef(graph_, out gdef));
  34. // Assert.IsTrue(expected_gdef.ToString().Equals(gdef.ToString()));
  35. // Compare that the output of the gradients of both graphs match.
  36. RunGraphsAndCompareOutputs(grad_outputs, expected_grad_outputs);
  37. }
  38. private bool GetGraphDef(Graph graph, out GraphDef graph_def)
  39. {
  40. graph_def = null;
  41. var s = new Status();
  42. var buffer = new Buffer();
  43. c_api.TF_GraphToGraphDef(graph, buffer, s);
  44. bool ret = TF_GetCode(s) == TF_OK;
  45. EXPECT_EQ(TF_OK, TF_GetCode(s));
  46. if (ret) graph_def = GraphDef.Parser.ParseFrom(buffer.Data);
  47. buffer.Dispose();
  48. s.Dispose();
  49. return ret;
  50. }
  51. private void RunGraphsAndCompareOutputs(TF_Output[] grad_outputs, TF_Output[] expected_grad_outputs)
  52. {
  53. var csession = new CSession(graph_, s_);
  54. var expected_csession = new CSession(expected_graph_, s_);
  55. var grad_outputs_vec = grad_outputs;
  56. csession.SetOutputs(grad_outputs_vec);
  57. csession.Run(s_);
  58. ASSERT_EQ(TF_OK, TF_GetCode(s_));
  59. var out0 = csession.output_tensor(0);
  60. var out1 = csession.output_tensor(1);
  61. var expected_grad_outputs_vec = expected_grad_outputs;
  62. expected_csession.SetOutputs(expected_grad_outputs_vec);
  63. expected_csession.Run(s_);
  64. ASSERT_EQ(TF_OK, TF_GetCode(s_));
  65. var expected_out0 = expected_csession.output_tensor(0);
  66. var expected_out1 = expected_csession.output_tensor(1);
  67. //CompareTensors(out0, expected_out0);
  68. //CompareTensors(out1, expected_out1);
  69. }
  70. /*void TestGradientsError(bool grad_inputs_provided)
  71. {
  72. var inputs = new TF_Output[1];
  73. var outputs = new TF_Output[1];
  74. var grad_outputs = new TF_Output[1];
  75. BuildErrorGraph(inputs, outputs);
  76. AddGradients(grad_inputs_provided, nullptr, inputs, 1, outputs, 1,
  77. grad_outputs);
  78. string expected_msg =
  79. "No gradient defined for op: TestOpWithNoGradient. Please see "
  80. "https://www.tensorflow.org/code/"
  81. "tensorflow/cc/gradients/README.md"
  82. " for instructions on how to add C++ gradients.";
  83. EXPECT_EQ(expected_msg, TF_Message(s_));
  84. }*/
  85. private void AddGradients(bool grad_inputs_provided, string prefix, TF_Output[] inputs, int ninputs,
  86. TF_Output[] outputs, int noutputs, TF_Output[] grad_outputs)
  87. {
  88. if (grad_inputs_provided)
  89. {
  90. var grad_inputs = new TF_Output[1];
  91. float[] grad_inputs_val = { 1.0f, 1.0f, 1.0f, 1.0f };
  92. var grad_inputs_op = FloatConst2x2(graph_, s_, grad_inputs_val, "GradInputs");
  93. grad_inputs[0] = new TF_Output(grad_inputs_op, 0);
  94. IntPtr[] handles = new IntPtr[2] { IntPtr.Zero, IntPtr.Zero };
  95. c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
  96. ninputs, grad_inputs, s_, handles);
  97. var op = new Operation(handles[0]);
  98. }
  99. else
  100. {
  101. //c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
  102. //ninputs, null, s_, grad_outputs);
  103. }
  104. }
  105. private void BuildSuccessGraph(TF_Output[] inputs, TF_Output[] outputs)
  106. {
  107. // Construct the following graph:
  108. // |
  109. // z|
  110. // |
  111. // MatMul
  112. // / \
  113. // ^ ^
  114. // | |
  115. // x| y|
  116. // | |
  117. // | |
  118. // Const_0 Const_1
  119. //
  120. var const0_val = new float[] { 1.0f, 2.0f, 3.0f, 4.0f };
  121. var const1_val = new float[] { 1.0f, 0.0f, 0.0f, 1.0f };
  122. var const0 = FloatConst2x2(graph_, s_, const0_val, "Const_0");
  123. var const1 = FloatConst2x2(graph_, s_, const1_val, "Const_1");
  124. var matmul = MatMul(graph_, s_, const0, const1, "MatMul");
  125. inputs[0] = new TF_Output(const0, 0);
  126. inputs[1] = new TF_Output(const1, 0);
  127. outputs[0] = new TF_Output(matmul, 0);
  128. EXPECT_EQ(TF_OK, TF_GetCode(s_));
  129. }
  130. private void BuildExpectedGraph(bool grad_inputs_provided, TF_Output[] expected_grad_outputs)
  131. {
  132. // The expected graph looks like this if grad_inputs_provided.
  133. // If grad_inputs_provided is false, Const_0 will be a OnesLike op.
  134. // ^ ^
  135. // dy| dx| // MatMul Gradient Graph
  136. // | |
  137. // MatMul_2 MatMul_1
  138. // ^ ^ ^ ^
  139. // | |----------| |
  140. // | ^ |
  141. // | dz| |
  142. // | | |
  143. // | Const_3 |
  144. // | |
  145. // | ^ |
  146. // | z| | // MatMul Forward Graph
  147. // | | |
  148. // | MatMul |
  149. // | / \ |
  150. // | ^ ^ |
  151. // | | | |
  152. // |---x| y|----|
  153. // | |
  154. // | |
  155. // Const_0 Const_1
  156. //
  157. float[] const0_val = { 1.0f, 2.0f, 3.0f, 4.0f };
  158. float[] const1_val = { 1.0f, 0.0f, 0.0f, 1.0f };
  159. var const0 = FloatConst2x2(expected_graph_, s_, const0_val, "Const_0");
  160. var const1 = FloatConst2x2(expected_graph_, s_, const1_val, "Const_1");
  161. var matmul = MatMul(expected_graph_, s_, const0, const1, "MatMul");
  162. Operation const3;
  163. if (grad_inputs_provided)
  164. {
  165. float[] const3_val = { 1.0f, 1.0f, 1.0f, 1.0f };
  166. const3 = FloatConst2x2(expected_graph_, s_, const3_val, "GradInputs");
  167. }
  168. else
  169. {
  170. const3 = OnesLike(expected_graph_, s_, matmul, "gradients/OnesLike");
  171. }
  172. var matmul1 = MatMul(expected_graph_, s_, const3, const1,
  173. "gradients/MatMul", false, true);
  174. var matmul2 = MatMul(expected_graph_, s_, const0, const3,
  175. "gradients/MatMul_1", true, false);
  176. expected_grad_outputs[0] = new TF_Output(matmul1, 0);
  177. expected_grad_outputs[1] = new TF_Output(matmul2, 0);
  178. }
  179. private Operation OnesLike(Graph graph, Status s, Operation input, string name)
  180. {
  181. var desc = TF_NewOperation(graph, "OnesLike", name);
  182. TF_AddInput(desc, new TF_Output(input, 0));
  183. var op = TF_FinishOperation(desc, s);
  184. EXPECT_EQ(TF_OK, TF_GetCode(s));
  185. return op;
  186. }
  187. private Operation FloatConst2x2(Graph graph, Status s, float[] values, string name)
  188. {
  189. var tensor = FloatTensor2x2(values);
  190. var desc = TF_NewOperation(graph, "Const", name);
  191. TF_SetAttrTensor(desc, "value", tensor, s);
  192. if (TF_GetCode(s) != TF_OK) return IntPtr.Zero;
  193. TF_SetAttrType(desc, "dtype", TF_FLOAT);
  194. var op = TF_FinishOperation(desc, s);
  195. EXPECT_EQ(TF_OK, TF_GetCode(s));
  196. return op;
  197. }
  198. private Tensor FloatTensor2x2(float[] values)
  199. {
  200. //long[] dims = { 2, 2 };
  201. //Tensor t = c_api.TF_AllocateTensor(TF_FLOAT, dims, 2, sizeof(float) * 4);
  202. //Marshal.Copy(values, 0, t, 4);
  203. Tensor t = new Tensor(new NDArray(values).reshape(2, 2));
  204. return t;
  205. }
  206. private Operation MatMul(Graph graph, Status s, Operation l, Operation r, string name,
  207. bool transpose_a = false, bool transpose_b = false)
  208. {
  209. var desc = TF_NewOperation(graph, "MatMul", name);
  210. if (transpose_a)
  211. {
  212. TF_SetAttrBool(desc, "transpose_a", true);
  213. }
  214. if (transpose_b)
  215. {
  216. TF_SetAttrBool(desc, "transpose_b", true);
  217. }
  218. TF_AddInput(desc, new TF_Output(l, 0));
  219. TF_AddInput(desc, new TF_Output(r, 0));
  220. var op = TF_FinishOperation(desc, s);
  221. EXPECT_EQ(TF_OK, TF_GetCode(s));
  222. return op;
  223. }
  224. [TestMethod]
  225. public void Gradients_GradInputs()
  226. {
  227. //TestGradientsSuccess(true);
  228. }
  229. [TestMethod]
  230. public void Gradients_NoGradInputs()
  231. {
  232. //TestGradientsSuccess(false);
  233. }
  234. [TestMethod]
  235. public void OpWithNoGradientRegistered_GradInputs()
  236. {
  237. //TestGradientsError(true);
  238. }
  239. [TestMethod]
  240. public void OpWithNoGradientRegistered_NoGradInputs()
  241. {
  242. //TestGradientsError(false);
  243. }
  244. public void Dispose()
  245. {
  246. graph_.Dispose();
  247. expected_graph_.Dispose();
  248. s_.Dispose();
  249. }
  250. }
  251. }