You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

linear_regression.py 3.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. '''
  2. A linear regression learning algorithm example using TensorFlow library.
  3. Author: Aymeric Damien
  4. Project: https://github.com/aymericdamien/TensorFlow-Examples/
  5. '''
  6. from __future__ import print_function
  7. import tensorflow as tf
  8. import numpy
  9. import matplotlib.pyplot as plt
  10. rng = numpy.random
  11. # Parameters
  12. learning_rate = 0.01
  13. training_epochs = 1000
  14. display_step = 10
  15. # Training Data
  16. train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
  17. 7.042,10.791,5.313,7.997,5.654,9.27,3.1])
  18. train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
  19. 2.827,3.465,1.65,2.904,2.42,2.94,1.3])
  20. n_samples = train_X.shape[0]
  21. if False:
  22. # tf Graph Input
  23. X = tf.placeholder("float")
  24. Y = tf.placeholder("float")
  25. # Set model weights
  26. W = tf.Variable(-0.06, name="weight")
  27. b = tf.Variable(-0.73, name="bias")
  28. # Construct a linear model
  29. mul = tf.multiply(X, W)
  30. pred = tf.add(mul, b)
  31. # Mean squared error
  32. sub = pred-Y
  33. pow = tf.pow(sub, 2)
  34. reduce = tf.reduce_sum(pow)
  35. cost = reduce/(2*n_samples)
  36. # Gradient descent
  37. # Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
  38. grad = tf.train.GradientDescentOptimizer(learning_rate)
  39. optimizer = grad.minimize(cost)
  40. # tf.train.export_meta_graph(filename='save_model.meta');
  41. else:
  42. # tf Graph Input
  43. new_saver = tf.train.import_meta_graph("linear_regression.meta")
  44. nodes = tf.get_default_graph()._nodes_by_name;
  45. optimizer = nodes["GradientDescent"]
  46. cost = nodes["truediv"].outputs[0]
  47. X = nodes["Placeholder"].outputs[0]
  48. Y = nodes["Placeholder_1"].outputs[0]
  49. W = nodes["weight"].outputs[0]
  50. b = nodes["bias"].outputs[0]
  51. pred = nodes["Add"].outputs[0]
  52. # Initialize the variables (i.e. assign their default value)
  53. init = tf.global_variables_initializer()
  54. # Start training
  55. with tf.Session() as sess:
  56. # Run the initializer
  57. sess.run(init)
  58. # Fit all training data
  59. for epoch in range(training_epochs):
  60. for (x, y) in zip(train_X, train_Y):
  61. sess.run(optimizer, feed_dict={X: x, Y: y})
  62. # Display logs per epoch step
  63. if (epoch+1) % display_step == 0:
  64. c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
  65. print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
  66. "W=", sess.run(W), "b=", sess.run(b))
  67. print("Optimization Finished!")
  68. training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
  69. print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
  70. # Graphic display
  71. plt.plot(train_X, train_Y, 'ro', label='Original data')
  72. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  73. plt.legend()
  74. plt.show()
  75. # Testing example, as requested (Issue #2)
  76. test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
  77. test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
  78. print("Testing... (Mean square loss Comparison)")
  79. testing_cost = sess.run(
  80. tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
  81. feed_dict={X: test_X, Y: test_Y}) # same function as cost above
  82. print("Testing cost=", testing_cost)
  83. print("Absolute mean square loss difference:", abs(
  84. training_cost - testing_cost))
  85. plt.plot(test_X, test_Y, 'bo', label='Testing data')
  86. plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
  87. plt.legend()
  88. plt.show()

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。