You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

LogisticRegression.cs 5.8 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. using Newtonsoft.Json;
  2. using NumSharp.Core;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.IO;
  6. using System.Linq;
  7. using System.Text;
  8. using Tensorflow;
  9. using TensorFlowNET.Examples.Utility;
  10. namespace TensorFlowNET.Examples
  11. {
  12. /// <summary>
  13. /// A logistic regression learning algorithm example using TensorFlow library.
  14. /// This example is using the MNIST database of handwritten digits
  15. /// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py
  16. /// </summary>
  17. public class LogisticRegression : Python, IExample
  18. {
  19. private float learning_rate = 0.01f;
  20. private int training_epochs = 10;
  21. private int batch_size = 100;
  22. private int display_step = 1;
  23. Datasets mnist;
  24. public void Run()
  25. {
  26. PrepareData();
  27. // tf Graph Input
  28. var x = tf.placeholder(tf.float32, new TensorShape(-1, 784)); // mnist data image of shape 28*28=784
  29. var y = tf.placeholder(tf.float32, new TensorShape(-1, 10)); // 0-9 digits recognition => 10 classes
  30. // Set model weights
  31. var W = tf.Variable(tf.zeros(new Shape(784, 10)));
  32. var b = tf.Variable(tf.zeros(new Shape(10)));
  33. // Construct model
  34. var pred = tf.nn.softmax(tf.matmul(x, W) + b); // Softmax
  35. // Minimize error using cross entropy
  36. var cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices: 1));
  37. // Gradient Descent
  38. var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost);
  39. // Initialize the variables (i.e. assign their default value)
  40. var init = tf.global_variables_initializer();
  41. with(tf.Session(), sess =>
  42. {
  43. // Run the initializer
  44. sess.run(init);
  45. // Training cycle
  46. foreach (var epoch in range(training_epochs))
  47. {
  48. var avg_cost = 0.0f;
  49. var total_batch = mnist.train.num_examples / batch_size;
  50. // Loop over all batches
  51. foreach (var i in range(total_batch))
  52. {
  53. var (batch_xs, batch_ys) = mnist.train.next_batch(batch_size);
  54. // Run optimization op (backprop) and cost op (to get loss value)
  55. var result = sess.run(new object[] { optimizer, cost },
  56. new FeedItem(x, batch_xs),
  57. new FeedItem(y, batch_ys));
  58. var c = (float)result[1];
  59. // Compute average loss
  60. avg_cost += c / total_batch;
  61. }
  62. // Display logs per epoch step
  63. if ((epoch + 1) % display_step == 0)
  64. print($"Epoch: {(epoch + 1).ToString("D4")} cost= {avg_cost.ToString("G9")}");
  65. }
  66. print("Optimization Finished!");
  67. // SaveModel(sess);
  68. // Test model
  69. var correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1));
  70. // Calculate accuracy
  71. var accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32));
  72. float acc = accuracy.eval(new FeedItem(x, mnist.test.images), new FeedItem(y, mnist.test.labels));
  73. print($"Accuracy: {acc.ToString("F4")}");
  74. Predict();
  75. });
  76. }
  77. public void PrepareData()
  78. {
  79. mnist = MnistDataSet.read_data_sets("logistic_regression", one_hot: true);
  80. }
  81. public void SaveModel(Session sess)
  82. {
  83. var saver = tf.train.Saver();
  84. var save_path = saver.save(sess, "logistic_regression/model.ckpt");
  85. tf.train.write_graph(sess.graph, "logistic_regression", "model.pbtxt", as_text: true);
  86. FreezeGraph.freeze_graph(input_graph: "logistic_regression/model.pbtxt",
  87. input_saver: "",
  88. input_binary: false,
  89. input_checkpoint: "logistic_regression/model.ckpt",
  90. output_node_names: "Softmax",
  91. restore_op_name: "save/restore_all",
  92. filename_tensor_name: "save/Const:0",
  93. output_graph: "logistic_regression/model.pb",
  94. clear_devices: true,
  95. initializer_nodes: "");
  96. }
  97. public void Predict()
  98. {
  99. var graph = new Graph().as_default();
  100. graph.Import(Path.Join("logistic_regression", "model.pb"));
  101. with(tf.Session(graph), sess =>
  102. {
  103. // restoring the model
  104. // var saver = tf.train.import_meta_graph("logistic_regression/tensorflowModel.ckpt.meta");
  105. // saver.restore(sess, tf.train.latest_checkpoint('logistic_regression'));
  106. var pred = graph.OperationByName("Softmax");
  107. var output = pred.outputs[0];
  108. var x = graph.OperationByName("Placeholder");
  109. var input = x.outputs[0];
  110. // predict
  111. var (batch_xs, batch_ys) = mnist.train.next_batch(10);
  112. var results = sess.run(output, new FeedItem(input, batch_xs[np.arange(1)]));
  113. if (results.argmax() == (batch_ys[0] as NDArray).argmax())
  114. print("predicted OK!");
  115. else
  116. throw new ValueError("predict error, maybe 90% accuracy");
  117. });
  118. }
  119. }
  120. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。