You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ObjectDetection.cs 5.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. using Newtonsoft.Json;
  2. using NumSharp;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.IO;
  6. using System.Text;
  7. using Tensorflow;
  8. using TensorFlowNET.Examples.Utility;
  9. using System.Drawing;
  10. using System.Drawing.Drawing2D;
  11. using System.Linq;
  12. using static Tensorflow.Python;
  13. namespace TensorFlowNET.Examples
  14. {
  15. public class ObjectDetection : IExample
  16. {
  17. public int Priority => 11;
  18. public bool Enabled { get; set; } = true;
  19. public string Name => "Object Detection";
  20. public bool ImportGraph { get; set; } = false;
  21. public float MIN_SCORE = 0.5f;
  22. string modelDir = "ssd_mobilenet_v1_coco_2018_01_28";
  23. string imageDir = "images";
  24. string pbFile = "frozen_inference_graph.pb";
  25. string labelFile = "mscoco_label_map.pbtxt";
  26. string picFile = "input.jpg";
  27. public bool Run()
  28. {
  29. PrepareData();
  30. // read in the input image
  31. var imgArr = ReadTensorFromImageFile(Path.Join(imageDir, "input.jpg"));
  32. var graph = new Graph().as_default();
  33. graph.Import(Path.Join(modelDir, pbFile));
  34. Tensor tensorNum = graph.OperationByName("num_detections");
  35. Tensor tensorBoxes = graph.OperationByName("detection_boxes");
  36. Tensor tensorScores = graph.OperationByName("detection_scores");
  37. Tensor tensorClasses = graph.OperationByName("detection_classes");
  38. Tensor imgTensor = graph.OperationByName("image_tensor");
  39. Tensor[] outTensorArr = new Tensor[] { tensorNum, tensorBoxes, tensorScores, tensorClasses };
  40. with(tf.Session(graph), sess =>
  41. {
  42. var results = sess.run(outTensorArr, new FeedItem(imgTensor, imgArr));
  43. NDArray[] resultArr = results.Data<NDArray>();
  44. buildOutputImage(resultArr);
  45. });
  46. return true;
  47. }
  48. public void PrepareData()
  49. {
  50. // get model file
  51. string url = "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz";
  52. Web.Download(url, modelDir, "ssd_mobilenet_v1_coco.tar.gz");
  53. Compress.ExtractTGZ(Path.Join(modelDir, "ssd_mobilenet_v1_coco.tar.gz"), "./");
  54. // download sample picture
  55. url = $"https://github.com/tensorflow/models/raw/master/research/object_detection/test_images/image2.jpg";
  56. Web.Download(url, imageDir, "input.jpg");
  57. // download the pbtxt file
  58. url = $"https://raw.githubusercontent.com/tensorflow/models/master/research/object_detection/data/mscoco_label_map.pbtxt";
  59. Web.Download(url, modelDir, "mscoco_label_map.pbtxt");
  60. }
  61. private NDArray ReadTensorFromImageFile(string file_name)
  62. {
  63. return with(tf.Graph().as_default(), graph =>
  64. {
  65. var file_reader = tf.read_file(file_name, "file_reader");
  66. var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: 3, name: "DecodeJpeg");
  67. var casted = tf.cast(decodeJpeg, TF_DataType.TF_UINT8);
  68. var dims_expander = tf.expand_dims(casted, 0);
  69. return with(tf.Session(graph), sess => sess.run(dims_expander));
  70. });
  71. }
  72. private void buildOutputImage(NDArray[] resultArr)
  73. {
  74. // get pbtxt items
  75. PbtxtItems pbTxtItems = PbtxtParser.ParsePbtxtFile(Path.Join(modelDir, "mscoco_label_map.pbtxt"));
  76. // get bitmap
  77. Bitmap bitmap = new Bitmap(Path.Join(imageDir, "input.jpg"));
  78. float[] scores = resultArr[2].Data<float>();
  79. for (int i=0; i<scores.Length; i++)
  80. {
  81. float score = scores[i];
  82. if (score > MIN_SCORE)
  83. {
  84. float[] boxes = resultArr[1].Data<float>();
  85. float top = boxes[i * 4] * bitmap.Height;
  86. float left = boxes[i * 4 + 1] * bitmap.Width;
  87. float bottom = boxes[i * 4 + 2] * bitmap.Height;
  88. float right = boxes[i * 4 + 3] * bitmap.Width;
  89. Rectangle rect = new Rectangle()
  90. {
  91. X = (int)left,
  92. Y = (int)top,
  93. Width = (int)(right - left),
  94. Height = (int)(bottom - top)
  95. };
  96. float[] ids = resultArr[3].Data<float>();
  97. string name = pbTxtItems.items.Where(w => w.id == (int)ids[i]).Select(s=>s.display_name).FirstOrDefault();
  98. drawObjectOnBitmap(bitmap, rect, score, name);
  99. }
  100. }
  101. string path = Path.Join(imageDir, "output.jpg");
  102. bitmap.Save(path);
  103. Console.WriteLine($"Processed image is saved as {path}");
  104. }
  105. private void drawObjectOnBitmap(Bitmap bmp, Rectangle rect, float score, string name)
  106. {
  107. using (Graphics graphic = Graphics.FromImage(bmp))
  108. {
  109. graphic.SmoothingMode = SmoothingMode.AntiAlias;
  110. using (Pen pen = new Pen(Color.Red, 2))
  111. {
  112. graphic.DrawRectangle(pen, rect);
  113. Point p = new Point(rect.Right + 5, rect.Top + 5);
  114. string text = string.Format("{0}:{1}%", name, (int)(score * 100));
  115. graphic.DrawString(text, new Font("Verdana", 8), Brushes.Red, p);
  116. }
  117. }
  118. }
  119. }
  120. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。