You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

NeuralNetXor.cs 5.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. using System;
  2. using System.Collections.Generic;
  3. using System.Text;
  4. using NumSharp;
  5. using Tensorflow;
  6. using TensorFlowNET.Examples.Utility;
  7. using static Tensorflow.Python;
  8. namespace TensorFlowNET.Examples
  9. {
  10. /// <summary>
  11. /// Simple vanilla neural net solving the famous XOR problem
  12. /// https://github.com/amygdala/tensorflow-workshop/blob/master/workshop_sections/getting_started/xor/README.md
  13. /// </summary>
  14. public class NeuralNetXor : IExample
  15. {
  16. public int Priority => 10;
  17. public bool Enabled { get; set; } = true;
  18. public string Name => "NN XOR";
  19. public bool ImportGraph { get; set; } = false;
  20. public int num_steps = 10000;
  21. private NDArray data;
  22. private (Operation, Tensor, Tensor) make_graph(Tensor features,Tensor labels, int num_hidden = 8)
  23. {
  24. var stddev = 1 / Math.Sqrt(2);
  25. var hidden_weights = tf.Variable(tf.truncated_normal(new int []{2, num_hidden}, seed:1, stddev: (float) stddev ));
  26. // Shape [4, num_hidden]
  27. var hidden_activations = tf.nn.relu(tf.matmul(features, hidden_weights));
  28. var output_weights = tf.Variable(tf.truncated_normal(
  29. new[] {num_hidden, 1},
  30. seed: 17,
  31. stddev: (float) (1 / Math.Sqrt(num_hidden))
  32. ));
  33. // Shape [4, 1]
  34. var logits = tf.matmul(hidden_activations, output_weights);
  35. // Shape [4]
  36. var predictions = tf.sigmoid(tf.squeeze(logits));
  37. var loss = tf.reduce_mean(tf.square(predictions - tf.cast(labels, tf.float32)), name:"loss");
  38. var gs = tf.Variable(0, trainable: false, name: "global_step");
  39. var train_op = tf.train.GradientDescentOptimizer(0.2f).minimize(loss, global_step: gs);
  40. return (train_op, loss, gs);
  41. }
  42. public bool Run()
  43. {
  44. PrepareData();
  45. float loss_value = 0;
  46. if (ImportGraph)
  47. loss_value = RunWithImportedGraph();
  48. else
  49. loss_value = RunWithBuiltGraph();
  50. return loss_value < 0.0628;
  51. }
  52. private float RunWithImportedGraph()
  53. {
  54. var graph = tf.Graph().as_default();
  55. tf.train.import_meta_graph("graph/xor.meta");
  56. Tensor features = graph.get_operation_by_name("Placeholder");
  57. Tensor labels = graph.get_operation_by_name("Placeholder_1");
  58. Tensor loss = graph.get_operation_by_name("loss");
  59. Tensor train_op = graph.get_operation_by_name("train_op");
  60. Tensor global_step = graph.get_operation_by_name("global_step");
  61. var init = tf.global_variables_initializer();
  62. float loss_value = 0;
  63. // Start tf session
  64. with(tf.Session(graph), sess =>
  65. {
  66. sess.run(init);
  67. var step = 0;
  68. var y_ = np.array(new int[] { 1, 0, 0, 1 }, dtype: np.int32);
  69. while (step < num_steps)
  70. {
  71. // original python:
  72. //_, step, loss_value = sess.run(
  73. // [train_op, gs, loss],
  74. // feed_dict={features: xy, labels: y_}
  75. // )
  76. var result = sess.run(new ITensorOrOperation[] { train_op, global_step, loss }, new FeedItem(features, data), new FeedItem(labels, y_));
  77. loss_value = result[2];
  78. step = result[1];
  79. if (step % 1000 == 0)
  80. Console.WriteLine($"Step {step} loss: {loss_value}");
  81. }
  82. Console.WriteLine($"Final loss: {loss_value}");
  83. });
  84. return loss_value;
  85. }
  86. private float RunWithBuiltGraph()
  87. {
  88. var graph = tf.Graph().as_default();
  89. var features = tf.placeholder(tf.float32, new TensorShape(4, 2));
  90. var labels = tf.placeholder(tf.int32, new TensorShape(4));
  91. var (train_op, loss, gs) = make_graph(features, labels);
  92. var init = tf.global_variables_initializer();
  93. float loss_value = 0;
  94. // Start tf session
  95. with(tf.Session(graph), sess =>
  96. {
  97. sess.run(init);
  98. var step = 0;
  99. var y_ = np.array(new int[] { 1, 0, 0, 1 }, dtype: np.int32);
  100. while (step < num_steps)
  101. {
  102. var result = sess.run(new ITensorOrOperation[] { train_op, gs, loss }, new FeedItem(features, data), new FeedItem(labels, y_));
  103. loss_value = result[2];
  104. step = result[1];
  105. if (step % 1000 == 0)
  106. Console.WriteLine($"Step {step} loss: {loss_value}");
  107. }
  108. Console.WriteLine($"Final loss: {loss_value}");
  109. });
  110. return loss_value;
  111. }
  112. public void PrepareData()
  113. {
  114. data = new float[,]
  115. {
  116. {1, 0 },
  117. {1, 1 },
  118. {0, 0 },
  119. {0, 1 }
  120. };
  121. if (ImportGraph)
  122. {
  123. // download graph meta data
  124. string url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/xor.meta";
  125. Web.Download(url, "graph", "xor.meta");
  126. }
  127. }
  128. }
  129. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。