You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

GradientsTest.cs 11 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using Tensorflow.NumPy;
  3. using System;
  4. using Tensorflow.Util;
  5. namespace Tensorflow.Native.UnitTest
  6. {
  7. /// <summary>
  8. /// tensorflow\c\c_api_test.cc
  9. /// `class CApiGradientsTest`
  10. /// </summary>
  11. [TestClass]
  12. public class GradientsTest : CApiTest, IDisposable
  13. {
  14. private Graph graph_ = new Graph();
  15. private Graph expected_graph_ = new Graph();
  16. private Status s_ = new Status();
  17. private void TestGradientsSuccess(bool grad_inputs_provided)
  18. {
  19. var inputs = new TF_Output[2];
  20. var outputs = new TF_Output[1];
  21. var grad_outputs = new TF_Output[2];
  22. var expected_grad_outputs = new TF_Output[2];
  23. BuildSuccessGraph(inputs, outputs);
  24. BuildExpectedGraph(grad_inputs_provided, expected_grad_outputs);
  25. AddGradients(grad_inputs_provided, "gradients", inputs, 2, outputs, 1,
  26. grad_outputs);
  27. EXPECT_EQ(TF_OK, TF_GetCode(s_));
  28. // Compare that the graphs match.
  29. GraphDef expected_gdef;
  30. GraphDef gdef;
  31. EXPECT_TRUE(GetGraphDef(expected_graph_, out expected_gdef));
  32. EXPECT_TRUE(GetGraphDef(graph_, out gdef));
  33. // Assert.IsTrue(expected_gdef.ToString().Equals(gdef.ToString()));
  34. // Compare that the output of the gradients of both graphs match.
  35. RunGraphsAndCompareOutputs(grad_outputs, expected_grad_outputs);
  36. }
  37. private bool GetGraphDef(Graph graph, out GraphDef graph_def)
  38. {
  39. graph_def = null;
  40. var s = new Status();
  41. var buffer = new Buffer();
  42. c_api.TF_GraphToGraphDef(graph, buffer, s);
  43. bool ret = TF_GetCode(s) == TF_OK;
  44. EXPECT_EQ(TF_OK, TF_GetCode(s));
  45. if (ret)
  46. graph_def = GraphDef.Parser.ParseFrom(buffer.ToArray());
  47. return ret;
  48. }
  49. private void RunGraphsAndCompareOutputs(TF_Output[] grad_outputs, TF_Output[] expected_grad_outputs)
  50. {
  51. var csession = new CSession(graph_, s_);
  52. var expected_csession = new CSession(expected_graph_, s_);
  53. var grad_outputs_vec = grad_outputs;
  54. csession.SetOutputs(grad_outputs_vec);
  55. csession.Run(s_);
  56. ASSERT_EQ(TF_OK, TF_GetCode(s_));
  57. var out0 = csession.output_tensor(0);
  58. var out1 = csession.output_tensor(1);
  59. var expected_grad_outputs_vec = expected_grad_outputs;
  60. expected_csession.SetOutputs(expected_grad_outputs_vec);
  61. expected_csession.Run(s_);
  62. ASSERT_EQ(TF_OK, TF_GetCode(s_));
  63. var expected_out0 = expected_csession.output_tensor(0);
  64. var expected_out1 = expected_csession.output_tensor(1);
  65. //CompareTensors(out0, expected_out0);
  66. //CompareTensors(out1, expected_out1);
  67. }
  68. /*void TestGradientsError(bool grad_inputs_provided)
  69. {
  70. var inputs = new TF_Output[1];
  71. var outputs = new TF_Output[1];
  72. var grad_outputs = new TF_Output[1];
  73. BuildErrorGraph(inputs, outputs);
  74. AddGradients(grad_inputs_provided, nullptr, inputs, 1, outputs, 1,
  75. grad_outputs);
  76. string expected_msg =
  77. "No gradient defined for op: TestOpWithNoGradient. Please see "
  78. "https://www.tensorflow.org/code/"
  79. "tensorflow/cc/gradients/README.md"
  80. " for instructions on how to add C++ gradients.";
  81. EXPECT_EQ(expected_msg, TF_Message(s_));
  82. }*/
  83. private void AddGradients(bool grad_inputs_provided, string prefix, TF_Output[] inputs, int ninputs,
  84. TF_Output[] outputs, int noutputs, TF_Output[] grad_outputs)
  85. {
  86. if (grad_inputs_provided)
  87. {
  88. var grad_inputs = new TF_Output[1];
  89. float[] grad_inputs_val = { 1.0f, 1.0f, 1.0f, 1.0f };
  90. var grad_inputs_op = FloatConst2x2(graph_, s_, grad_inputs_val, "GradInputs");
  91. grad_inputs[0] = new TF_Output(grad_inputs_op, 0);
  92. IntPtr[] handles = new IntPtr[2] { IntPtr.Zero, IntPtr.Zero };
  93. c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
  94. ninputs, grad_inputs, s_, handles);
  95. // var op = new Operation(handles[0]);
  96. }
  97. else
  98. {
  99. //c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
  100. //ninputs, null, s_, grad_outputs);
  101. }
  102. }
  103. private void BuildSuccessGraph(TF_Output[] inputs, TF_Output[] outputs)
  104. {
  105. // Construct the following graph:
  106. // |
  107. // z|
  108. // |
  109. // MatMul
  110. // / \
  111. // ^ ^
  112. // | |
  113. // x| y|
  114. // | |
  115. // | |
  116. // Const_0 Const_1
  117. //
  118. var const0_val = new float[] { 1.0f, 2.0f, 3.0f, 4.0f };
  119. var const1_val = new float[] { 1.0f, 0.0f, 0.0f, 1.0f };
  120. var const0 = FloatConst2x2(graph_, s_, const0_val, "Const_0");
  121. var const1 = FloatConst2x2(graph_, s_, const1_val, "Const_1");
  122. var matmul = MatMul(graph_, s_, const0, const1, "MatMul");
  123. inputs[0] = new TF_Output(const0, 0);
  124. inputs[1] = new TF_Output(const1, 0);
  125. outputs[0] = new TF_Output(matmul, 0);
  126. EXPECT_EQ(TF_OK, TF_GetCode(s_));
  127. }
  128. private void BuildExpectedGraph(bool grad_inputs_provided, TF_Output[] expected_grad_outputs)
  129. {
  130. // The expected graph looks like this if grad_inputs_provided.
  131. // If grad_inputs_provided is false, Const_0 will be a OnesLike op.
  132. // ^ ^
  133. // dy| dx| // MatMul Gradient Graph
  134. // | |
  135. // MatMul_2 MatMul_1
  136. // ^ ^ ^ ^
  137. // | |----------| |
  138. // | ^ |
  139. // | dz| |
  140. // | | |
  141. // | Const_3 |
  142. // | |
  143. // | ^ |
  144. // | z| | // MatMul Forward Graph
  145. // | | |
  146. // | MatMul |
  147. // | / \ |
  148. // | ^ ^ |
  149. // | | | |
  150. // |---x| y|----|
  151. // | |
  152. // | |
  153. // Const_0 Const_1
  154. //
  155. float[] const0_val = { 1.0f, 2.0f, 3.0f, 4.0f };
  156. float[] const1_val = { 1.0f, 0.0f, 0.0f, 1.0f };
  157. var const0 = FloatConst2x2(expected_graph_, s_, const0_val, "Const_0");
  158. var const1 = FloatConst2x2(expected_graph_, s_, const1_val, "Const_1");
  159. var matmul = MatMul(expected_graph_, s_, const0, const1, "MatMul");
  160. Operation const3;
  161. if (grad_inputs_provided)
  162. {
  163. float[] const3_val = { 1.0f, 1.0f, 1.0f, 1.0f };
  164. const3 = FloatConst2x2(expected_graph_, s_, const3_val, "GradInputs");
  165. }
  166. else
  167. {
  168. const3 = OnesLike(expected_graph_, s_, matmul, "gradients/OnesLike");
  169. }
  170. var matmul1 = MatMul(expected_graph_, s_, const3, const1,
  171. "gradients/MatMul", false, true);
  172. var matmul2 = MatMul(expected_graph_, s_, const0, const3,
  173. "gradients/MatMul_1", true, false);
  174. expected_grad_outputs[0] = new TF_Output(matmul1, 0);
  175. expected_grad_outputs[1] = new TF_Output(matmul2, 0);
  176. }
  177. private Operation OnesLike(Graph graph, Status s, Operation input, string name)
  178. {
  179. var desc = TF_NewOperation(graph, "OnesLike", name);
  180. TF_AddInput(desc, new TF_Output(input, 0));
  181. var op = TF_FinishOperation(desc, s);
  182. EXPECT_EQ(TF_OK, TF_GetCode(s));
  183. return op;
  184. }
  185. private Operation FloatConst2x2(Graph graph, Status s, float[] values, string name)
  186. {
  187. var tensor = FloatTensor2x2(values);
  188. var desc = TF_NewOperation(graph, "Const", name);
  189. TF_SetAttrTensor(desc, "value", tensor, s);
  190. if (TF_GetCode(s) != TF_OK) return IntPtr.Zero;
  191. TF_SetAttrType(desc, "dtype", TF_FLOAT);
  192. var op = TF_FinishOperation(desc, s);
  193. EXPECT_EQ(TF_OK, TF_GetCode(s));
  194. return op;
  195. }
  196. private Tensor FloatTensor2x2(float[] values)
  197. {
  198. //long[] dims = { 2, 2 };
  199. //Tensor t = c_api.TF_AllocateTensor(TF_FLOAT, dims, 2, sizeof(float) * 4);
  200. //Marshal.Copy(values, 0, t, 4);
  201. Tensor t = np.array(values).reshape((2, 2));
  202. return t;
  203. }
  204. private Operation MatMul(Graph graph, Status s, Operation l, Operation r, string name,
  205. bool transpose_a = false, bool transpose_b = false)
  206. {
  207. var desc = TF_NewOperation(graph, "MatMul", name);
  208. if (transpose_a)
  209. {
  210. TF_SetAttrBool(desc, "transpose_a", true);
  211. }
  212. if (transpose_b)
  213. {
  214. TF_SetAttrBool(desc, "transpose_b", true);
  215. }
  216. TF_AddInput(desc, new TF_Output(l, 0));
  217. TF_AddInput(desc, new TF_Output(r, 0));
  218. var op = TF_FinishOperation(desc, s);
  219. EXPECT_EQ(TF_OK, TF_GetCode(s));
  220. return op;
  221. }
  222. [TestMethod]
  223. public void Gradients_GradInputs()
  224. {
  225. //TestGradientsSuccess(true);
  226. }
  227. [TestMethod]
  228. public void Gradients_NoGradInputs()
  229. {
  230. //TestGradientsSuccess(false);
  231. }
  232. [TestMethod]
  233. public void OpWithNoGradientRegistered_GradInputs()
  234. {
  235. //TestGradientsError(true);
  236. }
  237. [TestMethod]
  238. public void OpWithNoGradientRegistered_NoGradInputs()
  239. {
  240. //TestGradientsError(false);
  241. }
  242. public void Dispose()
  243. {
  244. }
  245. }
  246. }