You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

SequentialModelLoad.cs 2.7 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using System;
  3. using System.Linq;
  4. using Tensorflow;
  5. using Tensorflow.Keras.Optimizers;
  6. using Tensorflow.Keras.UnitTest.Helpers;
  7. using Tensorflow.NumPy;
  8. using static Tensorflow.Binding;
  9. namespace TensorFlowNET.Keras.UnitTest.SaveModel;
  10. [TestClass]
  11. public class SequentialModelLoad
  12. {
  13. [Ignore]
  14. [TestMethod]
  15. public void SimpleModelFromAutoCompile()
  16. {
  17. var model = tf.keras.models.load_model(@"Assets/simple_model_from_auto_compile");
  18. model.summary();
  19. model.compile(new Adam(0.0001f), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" });
  20. // check the weights
  21. var kernel1 = np.load(@"Assets/simple_model_from_auto_compile/kernel1.npy");
  22. var bias0 = np.load(@"Assets/simple_model_from_auto_compile/bias0.npy");
  23. Assert.IsTrue(kernel1.Zip(model.TrainableWeights[2].numpy()).All(x => x.First == x.Second));
  24. Assert.IsTrue(bias0.Zip(model.TrainableWeights[1].numpy()).All(x => x.First == x.Second));
  25. var data_loader = new MnistModelLoader();
  26. var num_epochs = 1;
  27. var batch_size = 8;
  28. var dataset = data_loader.LoadAsync(new ModelLoadSetting
  29. {
  30. TrainDir = "mnist",
  31. OneHot = false,
  32. ValidationSize = 58000,
  33. }).Result;
  34. model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs);
  35. }
  36. [TestMethod]
  37. public void AlexnetFromSequential()
  38. {
  39. new SequentialModelSave().AlexnetFromSequential();
  40. var model = tf.keras.models.load_model(@"./alexnet_from_sequential");
  41. model.summary();
  42. model.compile(new Adam(0.001f), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" });
  43. var num_epochs = 1;
  44. var batch_size = 8;
  45. var dataset = new RandomDataSet(new Shape(227, 227, 3), 16);
  46. model.fit(dataset.Data, dataset.Labels, batch_size, num_epochs);
  47. }
  48. [TestMethod]
  49. public void ModelWithSelfDefinedModule()
  50. {
  51. var model = tf.keras.models.load_model(@"Assets/python_func_model");
  52. model.summary();
  53. model.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" });
  54. var data_loader = new MnistModelLoader();
  55. var num_epochs = 1;
  56. var batch_size = 8;
  57. var dataset = data_loader.LoadAsync(new ModelLoadSetting
  58. {
  59. TrainDir = "mnist",
  60. OneHot = false,
  61. ValidationSize = 55000,
  62. }).Result;
  63. model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs);
  64. }
  65. }