You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

CApiGradientsTest.cs 11 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using NumSharp.Core;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.Linq;
  6. using System.Runtime.InteropServices;
  7. using System.Text;
  8. using Tensorflow;
  9. using Buffer = Tensorflow.Buffer;
  10. namespace TensorFlowNET.UnitTest
  11. {
  12. /// <summary>
  13. /// tensorflow\c\c_api_test.cc
  14. /// `class CApiGradientsTest`
  15. /// </summary>
  16. [TestClass]
  17. public class CApiGradientsTest : CApiTest, IDisposable
  18. {
  19. private Graph graph_ = new Graph();
  20. private Graph expected_graph_ = new Graph();
  21. private Status s_ = new Status();
  22. private void TestGradientsSuccess(bool grad_inputs_provided)
  23. {
  24. var inputs = new TF_Output[2];
  25. var outputs = new TF_Output[1];
  26. var grad_outputs = new TF_Output[2];
  27. var expected_grad_outputs = new TF_Output[2];
  28. BuildSuccessGraph(inputs, outputs);
  29. BuildExpectedGraph(grad_inputs_provided, expected_grad_outputs);
  30. AddGradients(grad_inputs_provided, "gradients", inputs, 2, outputs, 1,
  31. grad_outputs);
  32. EXPECT_EQ(TF_OK, TF_GetCode(s_));
  33. // Compare that the graphs match.
  34. GraphDef expected_gdef;
  35. GraphDef gdef;
  36. EXPECT_TRUE(GetGraphDef(expected_graph_, out expected_gdef));
  37. EXPECT_TRUE(GetGraphDef(graph_, out gdef));
  38. // Assert.IsTrue(expected_gdef.ToString().Equals(gdef.ToString()));
  39. // Compare that the output of the gradients of both graphs match.
  40. RunGraphsAndCompareOutputs(grad_outputs, expected_grad_outputs);
  41. }
  42. private bool GetGraphDef(Graph graph, out GraphDef graph_def)
  43. {
  44. graph_def = null;
  45. var s = new Status();
  46. var buffer = new Buffer();
  47. c_api.TF_GraphToGraphDef(graph, buffer, s);
  48. bool ret = TF_GetCode(s) == TF_OK;
  49. EXPECT_EQ(TF_OK, TF_GetCode(s));
  50. if (ret) graph_def = GraphDef.Parser.ParseFrom(buffer.Data);
  51. buffer.Dispose();
  52. s.Dispose();
  53. return ret;
  54. }
  55. private void RunGraphsAndCompareOutputs(TF_Output[] grad_outputs, TF_Output[] expected_grad_outputs)
  56. {
  57. var csession = new CSession(graph_, s_);
  58. var expected_csession = new CSession(expected_graph_, s_);
  59. var grad_outputs_vec = grad_outputs;
  60. csession.SetOutputs(grad_outputs_vec);
  61. csession.Run(s_);
  62. ASSERT_EQ(TF_OK, TF_GetCode(s_));
  63. var out0 = csession.output_tensor(0);
  64. var out1 = csession.output_tensor(1);
  65. var expected_grad_outputs_vec = expected_grad_outputs;
  66. expected_csession.SetOutputs(expected_grad_outputs_vec);
  67. expected_csession.Run(s_);
  68. ASSERT_EQ(TF_OK, TF_GetCode(s_));
  69. var expected_out0 = expected_csession.output_tensor(0);
  70. var expected_out1 = expected_csession.output_tensor(1);
  71. //CompareTensors(out0, expected_out0);
  72. //CompareTensors(out1, expected_out1);
  73. }
  74. /*void TestGradientsError(bool grad_inputs_provided)
  75. {
  76. var inputs = new TF_Output[1];
  77. var outputs = new TF_Output[1];
  78. var grad_outputs = new TF_Output[1];
  79. BuildErrorGraph(inputs, outputs);
  80. AddGradients(grad_inputs_provided, nullptr, inputs, 1, outputs, 1,
  81. grad_outputs);
  82. string expected_msg =
  83. "No gradient defined for op: TestOpWithNoGradient. Please see "
  84. "https://www.tensorflow.org/code/"
  85. "tensorflow/cc/gradients/README.md"
  86. " for instructions on how to add C++ gradients.";
  87. EXPECT_EQ(expected_msg, TF_Message(s_));
  88. }*/
  89. private void AddGradients(bool grad_inputs_provided, string prefix, TF_Output[] inputs, int ninputs,
  90. TF_Output[] outputs, int noutputs, TF_Output[] grad_outputs)
  91. {
  92. if (grad_inputs_provided)
  93. {
  94. var grad_inputs = new TF_Output[1];
  95. float[] grad_inputs_val = { 1.0f, 1.0f, 1.0f, 1.0f };
  96. var grad_inputs_op = FloatConst2x2(graph_, s_, grad_inputs_val, "GradInputs");
  97. grad_inputs[0] = new TF_Output(grad_inputs_op, 0);
  98. IntPtr handle = IntPtr.Zero;
  99. c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
  100. ninputs, grad_inputs, s_, ref handle);
  101. grad_outputs[0] = Marshal.PtrToStructure<TF_Output>(handle);
  102. var op = new Operation(handle);
  103. }
  104. else
  105. {
  106. //c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
  107. //ninputs, null, s_, grad_outputs);
  108. }
  109. }
  110. private void BuildSuccessGraph(TF_Output[] inputs, TF_Output[] outputs)
  111. {
  112. // Construct the following graph:
  113. // |
  114. // z|
  115. // |
  116. // MatMul
  117. // / \
  118. // ^ ^
  119. // | |
  120. // x| y|
  121. // | |
  122. // | |
  123. // Const_0 Const_1
  124. //
  125. var const0_val = new float[] { 1.0f, 2.0f, 3.0f, 4.0f };
  126. var const1_val = new float[] { 1.0f, 0.0f, 0.0f, 1.0f };
  127. var const0 = FloatConst2x2(graph_, s_, const0_val, "Const_0");
  128. var const1 = FloatConst2x2(graph_, s_, const1_val, "Const_1");
  129. var matmul = MatMul(graph_, s_, const0, const1, "MatMul");
  130. inputs[0] = new TF_Output(const0, 0);
  131. inputs[1] = new TF_Output(const1, 0);
  132. outputs[0] = new TF_Output(matmul, 0);
  133. EXPECT_EQ(TF_OK, TF_GetCode(s_));
  134. }
  135. private void BuildExpectedGraph(bool grad_inputs_provided, TF_Output[] expected_grad_outputs)
  136. {
  137. // The expected graph looks like this if grad_inputs_provided.
  138. // If grad_inputs_provided is false, Const_0 will be a OnesLike op.
  139. // ^ ^
  140. // dy| dx| // MatMul Gradient Graph
  141. // | |
  142. // MatMul_2 MatMul_1
  143. // ^ ^ ^ ^
  144. // | |----------| |
  145. // | ^ |
  146. // | dz| |
  147. // | | |
  148. // | Const_3 |
  149. // | |
  150. // | ^ |
  151. // | z| | // MatMul Forward Graph
  152. // | | |
  153. // | MatMul |
  154. // | / \ |
  155. // | ^ ^ |
  156. // | | | |
  157. // |---x| y|----|
  158. // | |
  159. // | |
  160. // Const_0 Const_1
  161. //
  162. float[] const0_val = { 1.0f, 2.0f, 3.0f, 4.0f };
  163. float[] const1_val = { 1.0f, 0.0f, 0.0f, 1.0f };
  164. var const0 = FloatConst2x2(expected_graph_, s_, const0_val, "Const_0");
  165. var const1 = FloatConst2x2(expected_graph_, s_, const1_val, "Const_1");
  166. var matmul = MatMul(expected_graph_, s_, const0, const1, "MatMul");
  167. Operation const3;
  168. if (grad_inputs_provided)
  169. {
  170. float[] const3_val = { 1.0f, 1.0f, 1.0f, 1.0f };
  171. const3 = FloatConst2x2(expected_graph_, s_, const3_val, "GradInputs");
  172. }
  173. else
  174. {
  175. const3 = OnesLike(expected_graph_, s_, matmul, "gradients/OnesLike");
  176. }
  177. var matmul1 = MatMul(expected_graph_, s_, const3, const1,
  178. "gradients/MatMul", false, true);
  179. var matmul2 = MatMul(expected_graph_, s_, const0, const3,
  180. "gradients/MatMul_1", true, false);
  181. expected_grad_outputs[0] = new TF_Output(matmul1, 0);
  182. expected_grad_outputs[1] = new TF_Output(matmul2, 0);
  183. }
  184. private Operation OnesLike(Graph graph, Status s, Operation input, string name)
  185. {
  186. var desc = TF_NewOperation(graph, "OnesLike", name);
  187. TF_AddInput(desc, new TF_Output(input, 0));
  188. var op = TF_FinishOperation(desc, s);
  189. EXPECT_EQ(TF_OK, TF_GetCode(s));
  190. return op;
  191. }
  192. private Operation FloatConst2x2(Graph graph, Status s, float[] values, string name)
  193. {
  194. var tensor = FloatTensor2x2(values);
  195. var desc = TF_NewOperation(graph, "Const", name);
  196. TF_SetAttrTensor(desc, "value", tensor, s);
  197. if (TF_GetCode(s) != TF_OK) return IntPtr.Zero;
  198. TF_SetAttrType(desc, "dtype", TF_FLOAT);
  199. var op = TF_FinishOperation(desc, s);
  200. EXPECT_EQ(TF_OK, TF_GetCode(s));
  201. return op;
  202. }
  203. private Tensor FloatTensor2x2(float[] values)
  204. {
  205. //long[] dims = { 2, 2 };
  206. //Tensor t = c_api.TF_AllocateTensor(TF_FLOAT, dims, 2, sizeof(float) * 4);
  207. //Marshal.Copy(values, 0, t, 4);
  208. Tensor t = new Tensor(new NDArray(values).reshape(2, 2));
  209. return t;
  210. }
  211. private Operation MatMul(Graph graph, Status s, Operation l, Operation r, string name,
  212. bool transpose_a = false, bool transpose_b = false)
  213. {
  214. var desc = TF_NewOperation(graph, "MatMul", name);
  215. if (transpose_a)
  216. {
  217. TF_SetAttrBool(desc, "transpose_a", true);
  218. }
  219. if (transpose_b)
  220. {
  221. TF_SetAttrBool(desc, "transpose_b", true);
  222. }
  223. TF_AddInput(desc, new TF_Output(l, 0));
  224. TF_AddInput(desc, new TF_Output(r, 0));
  225. var op = TF_FinishOperation(desc, s);
  226. EXPECT_EQ(TF_OK, TF_GetCode(s));
  227. return op;
  228. }
  229. [TestMethod]
  230. public void Gradients_GradInputs()
  231. {
  232. TestGradientsSuccess(true);
  233. }
  234. [TestMethod]
  235. public void Gradients_NoGradInputs()
  236. {
  237. //TestGradientsSuccess(false);
  238. }
  239. [TestMethod]
  240. public void OpWithNoGradientRegistered_GradInputs()
  241. {
  242. //TestGradientsError(true);
  243. }
  244. [TestMethod]
  245. public void OpWithNoGradientRegistered_NoGradInputs()
  246. {
  247. //TestGradientsError(false);
  248. }
  249. public void Dispose()
  250. {
  251. graph_.Dispose();
  252. expected_graph_.Dispose();
  253. s_.Dispose();
  254. }
  255. }
  256. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。