You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

SequentialModelLoad.cs 2.0 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using System.Linq;
  3. using Tensorflow;
  4. using Tensorflow.Keras.Optimizers;
  5. using Tensorflow.Keras.UnitTest.Helpers;
  6. using Tensorflow.NumPy;
  7. using static Tensorflow.Binding;
  8. namespace TensorFlowNET.Keras.UnitTest.SaveModel;
  9. [TestClass]
  10. public class SequentialModelLoad
  11. {
  12. [TestMethod]
  13. public void SimpleModelFromAutoCompile()
  14. {
  15. var model = tf.keras.models.load_model(@"Assets/simple_model_from_auto_compile");
  16. model.summary();
  17. model.compile(new Adam(0.0001f), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" });
  18. // check the weights
  19. var kernel1 = np.load(@"Assets/simple_model_from_auto_compile/kernel1.npy");
  20. var bias0 = np.load(@"Assets/simple_model_from_auto_compile/bias0.npy");
  21. Assert.IsTrue(kernel1.Zip(model.TrainableWeights[2].numpy()).All(x => x.First == x.Second));
  22. Assert.IsTrue(bias0.Zip(model.TrainableWeights[1].numpy()).All(x => x.First == x.Second));
  23. var data_loader = new MnistModelLoader();
  24. var num_epochs = 1;
  25. var batch_size = 8;
  26. var dataset = data_loader.LoadAsync(new ModelLoadSetting
  27. {
  28. TrainDir = "mnist",
  29. OneHot = false,
  30. ValidationSize = 58000,
  31. }).Result;
  32. model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs);
  33. }
  34. [TestMethod]
  35. public void AlexnetFromSequential()
  36. {
  37. new SequentialModelSave().AlexnetFromSequential();
  38. var model = tf.keras.models.load_model(@"./alexnet_from_sequential");
  39. model.summary();
  40. model.compile(new Adam(0.001f), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" });
  41. var num_epochs = 1;
  42. var batch_size = 8;
  43. var dataset = new RandomDataSet(new Shape(227, 227, 3), 16);
  44. model.fit(dataset.Data, dataset.Labels, batch_size, num_epochs);
  45. }
  46. }