|
1234567891011121314151617181920212223242526272829303132 |
- # Chapter. Linear Regression
-
- ```csharp
- // Prepare training Data
- var train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f);
- var train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f);
- var n_samples = train_X.shape[0];
- ```
-
- ```csharp
- // tf Graph Input
- var X = tf.placeholder(tf.float32);
- var Y = tf.placeholder(tf.float32);
-
- // Set model weights
- // We can set a fixed init value in order to debug
- // var rnd1 = rng.randn<float>();
- // var rnd2 = rng.randn<float>();
- var W = tf.Variable(-0.06f, name: "weight");
- var b = tf.Variable(-0.73f, name: "bias");
-
- // Construct a linear model
- var pred = tf.add(tf.multiply(X, W), b);
-
- // Mean squared error
- var cost = tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * n_samples);
-
- // Gradient descent
- // Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
- var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost);
- ```
-
|