You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

SequentialModelLoad.cs 1.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using System;
  3. using System.Collections.Generic;
  4. using System.Diagnostics;
  5. using System.Linq;
  6. using System.Text;
  7. using System.Threading.Tasks;
  8. using Tensorflow.Keras.Engine;
  9. using Tensorflow.Keras.Saving.SavedModel;
  10. using Tensorflow.Keras.Losses;
  11. using Tensorflow.Keras.Metrics;
  12. using Tensorflow;
  13. using Tensorflow.Keras.Optimizers;
  14. using static Tensorflow.KerasApi;
  15. namespace TensorFlowNET.Keras.UnitTest.SaveModel;
  16. [TestClass]
  17. public class SequentialModelLoad
  18. {
  19. [TestMethod]
  20. public void SimpleModelFromSequential()
  21. {
  22. var model = KerasLoadModelUtils.load_model(@"D:/development/tf.net/tf_test/model.pb");
  23. Debug.Assert(model is Model);
  24. var m = model as Model;
  25. m.summary();
  26. m.compile(new Adam(0.001f), new LossesApi().SparseCategoricalCrossentropy(), new string[] { "accuracy" });
  27. var data_loader = new MnistModelLoader();
  28. var num_epochs = 1;
  29. var batch_size = 50;
  30. var dataset = data_loader.LoadAsync(new ModelLoadSetting
  31. {
  32. TrainDir = "mnist",
  33. OneHot = false,
  34. ValidationSize = 50000,
  35. }).Result;
  36. m.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs);
  37. }
  38. }