|
- using LLama.Abstractions;
- using System;
- using System.Text;
- using System.Text.Json;
- using System.Text.Json.Serialization;
- using LLama.Native;
-
- namespace LLama.Common
- {
- /// <summary>
- /// The parameters for initializing a LLama model.
- /// </summary>
- public record ModelParams
- : ILLamaParams
- {
- /// <summary>
- /// Model context size (n_ctx)
- /// </summary>
- public uint ContextSize { get; set; } = 512;
- /// <summary>
- /// the GPU that is used for scratch and small tensors
- /// </summary>
- public int MainGpu { get; set; } = 0;
-
- /// <summary>
- /// Number of layers to run in VRAM / GPU memory (n_gpu_layers)
- /// </summary>
- public int GpuLayerCount { get; set; } = 20;
- /// <summary>
- /// Seed for the random number generator (seed)
- /// </summary>
- public uint Seed { get; set; } = 0xFFFFFFFF;
- /// <summary>
- /// Use f16 instead of f32 for memory kv (memory_f16)
- /// </summary>
- public bool UseFp16Memory { get; set; } = true;
- /// <summary>
- /// Use mmap for faster loads (use_mmap)
- /// </summary>
- public bool UseMemorymap { get; set; } = true;
- /// <summary>
- /// Use mlock to keep model in memory (use_mlock)
- /// </summary>
- public bool UseMemoryLock { get; set; }
- /// <summary>
- /// Compute perplexity over the prompt (perplexity)
- /// </summary>
- public bool Perplexity { get; set; }
- /// <summary>
- /// Model path (model)
- /// </summary>
- public string ModelPath { get; set; }
-
- /// <summary>
- /// List of LoRAs to apply
- /// </summary>
- public AdapterCollection LoraAdapters { get; set; } = new();
-
- /// <summary>
- /// base model path for the lora adapter (lora_base)
- /// </summary>
- public string LoraBase { get; set; } = string.Empty;
-
- /// <summary>
- /// Number of threads (null = autodetect) (n_threads)
- /// </summary>
- public uint? Threads { get; set; }
-
- /// <summary>
- /// Number of threads to use for batch processing (null = autodetect) (n_threads)
- /// </summary>
- public uint? BatchThreads { get; set; }
-
- /// <summary>
- /// batch size for prompt processing (must be >=32 to use BLAS) (n_batch)
- /// </summary>
- public uint BatchSize { get; set; } = 512;
-
- /// <summary>
- /// Whether to use embedding mode. (embedding) Note that if this is set to true,
- /// The LLamaModel won't produce text response anymore.
- /// </summary>
- public bool EmbeddingMode { get; set; }
-
- /// <summary>
- /// how split tensors should be distributed across GPUs.
- /// </summary>
- /// <remarks>"[ 3, 2 ]" will assign 60% of the data to GPU 0 and 40% to GPU 1.</remarks>
- [JsonConverter(typeof(TensorSplitsCollectionConverter))]
- public TensorSplitsCollection TensorSplits { get; set; } = new();
-
- /// <summary>
- /// RoPE base frequency
- /// </summary>
- public float? RopeFrequencyBase { get; set; }
-
- /// <summary>
- /// RoPE frequency scaling factor
- /// </summary>
- public float? RopeFrequencyScale { get; set; }
-
-
- /// <inheritdoc />
- public float? YarnExtrapolationFactor { get; set; }
-
- /// <inheritdoc />
- public float? YarnAttentionFactor { get; set; }
-
- /// <inheritdoc />
- public float? YarnBetaFast { get; set; }
-
- /// <inheritdoc />
- public float? YarnBetaSlow { get; set; }
-
- /// <inheritdoc />
- public uint? YarnOriginalContext { get; set; }
-
- /// <inheritdoc />
- public RopeScalingType? YarnScalingType { get; set; }
-
- /// <summary>
- /// Use experimental mul_mat_q kernels
- /// </summary>
- public bool MulMatQ { get; set; }
-
-
- /// <summary>
- /// Load vocab only (no weights)
- /// </summary>
- public bool VocabOnly { get; set; }
-
- /// <summary>
- /// The encoding to use to convert text for the model
- /// </summary>
- [JsonConverter(typeof(EncodingConverter))]
- public Encoding Encoding { get; set; } = Encoding.UTF8;
-
- /// <summary>
- ///
- /// </summary>
- /// <param name="modelPath">The model path.</param>
- [JsonConstructor]
- public ModelParams(string modelPath)
- {
- ModelPath = modelPath;
- }
-
- private ModelParams()
- {
- // This constructor (default parameterless constructor) is used by Newtonsoft to deserialize!
- ModelPath = "";
- }
-
- /// <summary>
- ///
- /// </summary>
- /// <param name="modelPath">The model path.</param>
- /// <param name="contextSize">Model context size (n_ctx)</param>
- /// <param name="gpuLayerCount">Number of layers to run in VRAM / GPU memory (n_gpu_layers)</param>
- /// <param name="seed">Seed for the random number generator (seed)</param>
- /// <param name="useFp16Memory">Whether to use f16 instead of f32 for memory kv (memory_f16)</param>
- /// <param name="useMemorymap">Whether to use mmap for faster loads (use_mmap)</param>
- /// <param name="useMemoryLock">Whether to use mlock to keep model in memory (use_mlock)</param>
- /// <param name="perplexity">Thether to compute perplexity over the prompt (perplexity)</param>
- /// <param name="loraAdapter">Lora adapter path (lora_adapter)</param>
- /// <param name="loraBase">Base model path for the lora adapter (lora_base)</param>
- /// <param name="threads">Number of threads (-1 = autodetect) (n_threads)</param>
- /// <param name="batchSize">Batch size for prompt processing (must be >=32 to use BLAS) (n_batch)</param>
- /// <param name="embeddingMode">Whether to use embedding mode. (embedding) Note that if this is set to true, The LLamaModel won't produce text response anymore.</param>
- /// <param name="ropeFrequencyBase">RoPE base frequency.</param>
- /// <param name="ropeFrequencyScale">RoPE frequency scaling factor</param>
- /// <param name="mulMatQ">Use experimental mul_mat_q kernels</param>
- /// <param name="encoding">The encoding to use to convert text for the model</param>
- [Obsolete("Use object initializer to set all optional parameters")]
- public ModelParams(string modelPath, uint contextSize = 512, int gpuLayerCount = 20,
- uint seed = 1337, bool useFp16Memory = true,
- bool useMemorymap = true, bool useMemoryLock = false, bool perplexity = false,
- string loraAdapter = "", string loraBase = "", int threads = -1, uint batchSize = 512,
- bool embeddingMode = false,
- float? ropeFrequencyBase = null, float? ropeFrequencyScale = null, bool mulMatQ = false,
- string encoding = "UTF-8")
- {
- ContextSize = contextSize;
- GpuLayerCount = gpuLayerCount;
- Seed = seed;
- UseFp16Memory = useFp16Memory;
- UseMemorymap = useMemorymap;
- UseMemoryLock = useMemoryLock;
- Perplexity = perplexity;
- ModelPath = modelPath;
- LoraBase = loraBase;
- Threads = threads < 1 ? null : (uint)threads;
- BatchSize = batchSize;
- EmbeddingMode = embeddingMode;
- RopeFrequencyBase = ropeFrequencyBase;
- RopeFrequencyScale = ropeFrequencyScale;
- MulMatQ = mulMatQ;
- Encoding = Encoding.GetEncoding(encoding);
- LoraAdapters.Add(new LoraAdapter(loraAdapter, 1));
- }
- }
-
- internal class EncodingConverter
- : JsonConverter<Encoding>
- {
- public override Encoding? Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
- {
- var name = reader.GetString();
- if (name == null)
- return null;
- return Encoding.GetEncoding(name);
- }
-
- public override void Write(Utf8JsonWriter writer, Encoding value, JsonSerializerOptions options)
- {
- writer.WriteStringValue(value.WebName);
- }
- }
-
- internal class TensorSplitsCollectionConverter
- : JsonConverter<TensorSplitsCollection>
- {
- public override TensorSplitsCollection? Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
- {
- var arr = JsonSerializer.Deserialize<float[]>(ref reader, options) ?? Array.Empty<float>();
- return new TensorSplitsCollection(arr);
- }
-
- public override void Write(Utf8JsonWriter writer, TensorSplitsCollection value, JsonSerializerOptions options)
- {
- JsonSerializer.Serialize(writer, value.Splits, options);
- }
- }
- }
|