|
- using System;
- using System.Buffers;
- using System.Runtime.InteropServices;
-
- using llama_token = System.Int32;
-
- namespace LLama.Native
- {
- /// <summary>
- /// Contains an array of LLamaTokenData, potentially sorted.
- /// </summary>
- public struct LLamaTokenDataArray
- {
- /// <summary>
- /// The LLamaTokenData
- /// </summary>
- public readonly Memory<LLamaTokenData> data;
-
- /// <summary>
- /// Indicates if `data` is sorted by logits in descending order. If this is false the token data is in _no particular order_.
- /// </summary>
- public bool sorted;
-
- /// <summary>
- /// Create a new LLamaTokenDataArray
- /// </summary>
- /// <param name="tokens"></param>
- /// <param name="isSorted"></param>
- public LLamaTokenDataArray(Memory<LLamaTokenData> tokens, bool isSorted = false)
- {
- data = tokens;
- sorted = isSorted;
- }
-
- /// <summary>
- /// Create a new LLamaTokenDataArray, copying the data from the given logits
- /// </summary>
- /// <param name="logits"></param>
- /// <returns></returns>
- public static LLamaTokenDataArray Create(ReadOnlySpan<float> logits)
- {
- var candidates = new LLamaTokenData[logits.Length];
- for (var token_id = 0; token_id < logits.Length; token_id++)
- candidates[token_id] = new LLamaTokenData(token_id, logits[token_id], 0.0f);
-
- return new LLamaTokenDataArray(candidates);
- }
-
- /// <summary>
- /// Overwrite the logit values for all given tokens
- /// </summary>
- /// <param name="values">tuples of token and logit value to overwrite</param>
- public void OverwriteLogits(ReadOnlySpan<(llama_token token, float logit)> values)
- {
- if (values.Length == 0)
- return;
-
- var dataSpan = data.Span;
- foreach (var (token, value) in values)
- {
- for (var i = 0; i < data.Length; i++)
- {
- if (dataSpan[i].id == token)
- {
- dataSpan[i].logit = value;
- break;
- }
- }
- }
- sorted = false;
- }
-
- #region sampling
- /// <summary>
- /// Apply grammar rules to candidate tokens
- /// </summary>
- /// <param name="ctx"></param>
- /// <param name="grammar"></param>
- public void ApplyGrammar(SafeLLamaContextHandle ctx, SafeLLamaGrammarHandle? grammar)
- {
- if (grammar == null)
- return;
-
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- NativeApi.llama_sample_grammar(ctx, ref st, grammar);
- sorted = st.sorted;
- }
- }
-
- /// <summary>
- /// Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
- /// </summary>
- /// <param name="context"></param>
- /// <param name="k">Number of tokens to keep</param>
- /// <param name="minKeep">Minimum number to keep</param>
- public void TopK(SafeLLamaContextHandle context, int k, ulong minKeep = 1)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- NativeApi.llama_sample_top_k(context, ref st, k, minKeep);
- sorted = st.sorted;
- }
- }
-
- /// <summary>
- /// Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
- /// </summary>
- /// <param name="context"></param>
- /// <param name="p"></param>
- /// <param name="minKeep"></param>
- public void TopP(SafeLLamaContextHandle context, float p, ulong minKeep = 1)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- NativeApi.llama_sample_top_p(context, ref st, p, minKeep);
- sorted = st.sorted;
- }
- }
-
- /// <summary>
- /// Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
- /// </summary>
- /// <param name="context"></param>
- /// <param name="p">All tokens with probability greater than this will be kept</param>
- /// <param name="minKeep"></param>
- public void MinP(SafeLLamaContextHandle context, float p, ulong minKeep = 1)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- NativeApi.llama_sample_min_p(context, ref st, p, minKeep);
- sorted = st.sorted;
- }
- }
-
- /// <summary>
- /// Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
- /// </summary>
- /// <param name="context"></param>
- /// <param name="z"></param>
- /// <param name="min_keep"></param>
- public void TailFree(SafeLLamaContextHandle context, float z, ulong min_keep = 1)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- NativeApi.llama_sample_tail_free(context, ref st, z, min_keep);
- sorted = st.sorted;
- }
- }
-
- /// <summary>
- /// Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
- /// </summary>
- /// <param name="context"></param>
- /// <param name="p"></param>
- /// <param name="min_keep"></param>
- public void LocallyTypical(SafeLLamaContextHandle context, float p, ulong min_keep = 1)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- NativeApi.llama_sample_typical(context, ref st, p, min_keep);
- sorted = st.sorted;
- }
- }
-
- /// <summary>
- /// Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
- /// Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
- /// </summary>
- /// <param name="context"></param>
- /// <param name="last_tokens"></param>
- /// <param name="penalty_repeat"></param>
- /// <param name="penalty_freq"></param>
- /// <param name="penalty_present"></param>
- public void RepetitionPenalty(SafeLLamaContextHandle context, ReadOnlySpan<llama_token> last_tokens, float penalty_repeat, float penalty_freq, float penalty_present)
- {
- unsafe
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- fixed (int* last_tokens_handle = last_tokens)
- {
- NativeApi.llama_sample_repetition_penalties(context, ref st, last_tokens_handle, (ulong)last_tokens.Length, penalty_repeat, penalty_freq, penalty_present);
- sorted = st.sorted;
- }
- }
- }
- }
-
- /// <summary>
- /// Sample with temperature.
- /// As temperature increases, the prediction becomes more diverse but also vulnerable to hallucinations -- generating tokens that are sensible but not factual
- /// </summary>
- /// <param name="context"></param>
- /// <param name="temp"></param>
- public void Temperature(SafeLLamaContextHandle context, float temp)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- NativeApi.llama_sample_temperature(context, ref st, temp);
- sorted = st.sorted;
- }
- }
-
- /// <summary>
- /// Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
- /// </summary>
- /// <param name="context"></param>
- public void Softmax(SafeLLamaContextHandle context)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- NativeApi.llama_sample_softmax(context, ref st);
- sorted = st.sorted;
- }
- }
-
- /// <summary>
- /// Randomly selects a token from the candidates based on their probabilities.
- /// </summary>
- /// <param name="context"></param>
- /// <returns></returns>
- public int SampleToken(SafeLLamaContextHandle context)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- var token = NativeApi.llama_sample_token(context, ref st);
- sorted = st.sorted;
- return token;
- }
- }
-
- /// <summary>
- /// Selects the token with the highest probability.
- /// </summary>
- /// <param name="context"></param>
- /// <returns></returns>
- public int SampleTokenGreedy(SafeLLamaContextHandle context)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- var token = NativeApi.llama_sample_token_greedy(context, ref st);
- sorted = st.sorted;
- return token;
- }
- }
-
- /// <summary>
- /// Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
- /// </summary>
- /// <param name="context"></param>
- /// <param name="tau">The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.</param>
- /// <param name="eta">The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.</param>
- /// <param name="m">The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.</param>
- /// <param name="mu">Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.</param>
- /// <returns></returns>
- public int SampleTokenMirostat(SafeLLamaContextHandle context, float tau, float eta, int m, ref float mu)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- var token = NativeApi.llama_sample_token_mirostat(context, ref st, tau, eta, m, ref mu);
- sorted = st.sorted;
- return token;
- }
- }
-
- /// <summary>
- /// Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
- /// </summary>
- /// <param name="context"></param>
- /// <param name="tau">The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.</param>
- /// <param name="eta">The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.</param>
- /// <param name="mu">Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.</param>
- /// <returns></returns>
- public int SampleTokenMirostat2(SafeLLamaContextHandle context, float tau, float eta, ref float mu)
- {
- using (LLamaTokenDataArrayNative.Create(this, out var st))
- {
- var token = NativeApi.llama_sample_token_mirostat_v2(context, ref st, tau, eta, ref mu);
- sorted = st.sorted;
- return token;
- }
- }
- #endregion
- }
-
- /// <summary>
- /// Contains a pointer to an array of LLamaTokenData which is pinned in memory.
- /// </summary>
- [StructLayout(LayoutKind.Sequential)]
- public struct LLamaTokenDataArrayNative
- {
- /// <summary>
- /// A pointer to an array of LlamaTokenData
- /// </summary>
- /// <remarks>Memory must be pinned in place for all the time this LLamaTokenDataArrayNative is in use</remarks>
- public IntPtr data;
-
- /// <summary>
- /// Number of LLamaTokenData in the array
- /// </summary>
- public ulong size;
-
- /// <summary>
- /// Indicates if the items in the array are sorted
- /// </summary>
- public bool sorted
- {
- get => Convert.ToBoolean(_sorted);
- set => _sorted = Convert.ToSByte(value);
- }
- private sbyte _sorted;
-
- /// <summary>
- /// Create a new LLamaTokenDataArrayNative around the data in the LLamaTokenDataArray
- /// </summary>
- /// <param name="array">Data source</param>
- /// <param name="native">Created native array</param>
- /// <returns>A memory handle, pinning the data in place until disposed</returns>
- public static MemoryHandle Create(LLamaTokenDataArray array, out LLamaTokenDataArrayNative native)
- {
- var handle = array.data.Pin();
-
- unsafe
- {
- native = new LLamaTokenDataArrayNative
- {
- data = new IntPtr(handle.Pointer),
- size = (ulong)array.data.Length,
- sorted = array.sorted
- };
- }
-
- return handle;
- }
- }
- }
|