|
- using LLama.Common;
- using Microsoft.SemanticKernel.Memory;
- using LLamaSharp.SemanticKernel.TextEmbedding;
-
- namespace LLama.Examples.Examples
- {
- public class SemanticKernelMemory
- {
- private const string MemoryCollectionName = "SKGitHub";
-
- public static async Task Run()
- {
- string modelPath = UserSettings.GetModelPath();
-
- Console.WriteLine("This example is from: \n" +
- "https://github.com/microsoft/semantic-kernel/blob/main/dotnet/samples/KernelSyntaxExamples/Example14_SemanticMemory.cs");
-
- var seed = 1337u;
- // Load weights into memory
- var parameters = new ModelParams(modelPath)
- {
- Seed = seed,
- Embeddings = true
- };
-
- using var model = LLamaWeights.LoadFromFile(parameters);
- var embedding = new LLamaEmbedder(model, parameters);
-
- Console.WriteLine("====================================================");
- Console.WriteLine("======== Semantic Memory (volatile, in RAM) ========");
- Console.WriteLine("====================================================");
-
- /* You can build your own semantic memory combining an Embedding Generator
- * with a Memory storage that supports search by similarity (ie semantic search).
- *
- * In this example we use a volatile memory, a local simulation of a vector DB.
- *
- * You can replace VolatileMemoryStore with Qdrant (see QdrantMemoryStore connector)
- * or implement your connectors for Pinecone, Vespa, Postgres + pgvector, SQLite VSS, etc.
- */
-
- var memory = new MemoryBuilder()
- .WithTextEmbeddingGeneration(new LLamaSharpEmbeddingGeneration(embedding))
- .WithMemoryStore(new VolatileMemoryStore())
- .Build();
-
- await RunExampleAsync(memory);
- }
-
- private static async Task RunExampleAsync(ISemanticTextMemory memory)
- {
- await StoreMemoryAsync(memory);
-
- await SearchMemoryAsync(memory, "How do I get started?");
-
- /*
- Output:
-
- Query: How do I get started?
-
- Result 1:
- URL: : https://github.com/microsoft/semantic-kernel/blob/main/README.md
- Title : README: Installation, getting started, and how to contribute
-
- Result 2:
- URL: : https://github.com/microsoft/semantic-kernel/blob/main/samples/dotnet-jupyter-notebooks/00-getting-started.ipynb
- Title : Jupyter notebook describing how to get started with the Semantic Kernel
-
- */
-
- await SearchMemoryAsync(memory, "Can I build a chat with SK?");
-
- /*
- Output:
-
- Query: Can I build a chat with SK?
-
- Result 1:
- URL: : https://github.com/microsoft/semantic-kernel/tree/main/samples/skills/ChatSkill/ChatGPT
- Title : Sample demonstrating how to create a chat skill interfacing with ChatGPT
-
- Result 2:
- URL: : https://github.com/microsoft/semantic-kernel/blob/main/samples/apps/chat-summary-webapp-react/README.md
- Title : README: README associated with a sample chat summary react-based webapp
-
- */
-
- await SearchMemoryAsync(memory, "Jupyter notebook");
-
- await SearchMemoryAsync(memory, "README: README associated with a sample chat summary react-based webapp");
-
- await SearchMemoryAsync(memory, "Jupyter notebook describing how to pass prompts from a file to a semantic skill or function");
- }
-
- private static async Task SearchMemoryAsync(ISemanticTextMemory memory, string query)
- {
- Console.WriteLine("\nQuery: " + query + "\n");
-
- var memories = memory.SearchAsync(MemoryCollectionName, query, limit: 10, minRelevanceScore: 0.5);
-
- int i = 0;
- await foreach (MemoryQueryResult result in memories)
- {
- Console.WriteLine($"Result {++i}:");
- Console.WriteLine(" URL: : " + result.Metadata.Id);
- Console.WriteLine(" Title : " + result.Metadata.Description);
- Console.WriteLine(" Relevance: " + result.Relevance);
- Console.WriteLine();
- }
-
- Console.WriteLine("----------------------");
- }
-
- private static async Task StoreMemoryAsync(ISemanticTextMemory memory)
- {
- /* Store some data in the semantic memory.
- *
- * When using Azure Cognitive Search the data is automatically indexed on write.
- *
- * When using the combination of VolatileStore and Embedding generation, SK takes
- * care of creating and storing the index
- */
-
- Console.WriteLine("\nAdding some GitHub file URLs and their descriptions to the semantic memory.");
- var githubFiles = SampleData();
- var i = 0;
- foreach (var entry in githubFiles)
- {
- var result = await memory.SaveReferenceAsync(
- collection: MemoryCollectionName,
- externalSourceName: "GitHub",
- externalId: entry.Key,
- description: entry.Value,
- text: entry.Value);
-
- Console.WriteLine($"#{++i} saved.");
- Console.WriteLine(result);
- }
-
- Console.WriteLine("\n----------------------");
- }
-
- private static Dictionary<string, string> SampleData()
- {
- return new Dictionary<string, string>
- {
- ["https://github.com/microsoft/semantic-kernel/blob/main/README.md"]
- = "README: Installation, getting started, and how to contribute",
- ["https://github.com/microsoft/semantic-kernel/blob/main/dotnet/notebooks/02-running-prompts-from-file.ipynb"]
- = "Jupyter notebook describing how to pass prompts from a file to a semantic skill or function",
- ["https://github.com/microsoft/semantic-kernel/blob/main/dotnet/notebooks//00-getting-started.ipynb"]
- = "Jupyter notebook describing how to get started with the Semantic Kernel",
- ["https://github.com/microsoft/semantic-kernel/tree/main/samples/skills/ChatSkill/ChatGPT"]
- = "Sample demonstrating how to create a chat skill interfacing with ChatGPT",
- ["https://github.com/microsoft/semantic-kernel/blob/main/dotnet/src/SemanticKernel/Memory/VolatileMemoryStore.cs"]
- = "C# class that defines a volatile embedding store",
- ["https://github.com/microsoft/semantic-kernel/blob/main/samples/dotnet/KernelHttpServer/README.md"]
- = "README: How to set up a Semantic Kernel Service API using Azure Function Runtime v4",
- ["https://github.com/microsoft/semantic-kernel/blob/main/samples/apps/chat-summary-webapp-react/README.md"]
- = "README: README associated with a sample chat summary react-based webapp",
- };
- }
- }
- }
|