using System;
#pragma warning disable IDE1006 // Naming Styles
namespace LLama.Native
{
using llama_token = Int32;
///
/// Direct translation of the llama.cpp sampling API
///
public unsafe class SamplingApi
{
///
/// Apply grammar rules to candidate tokens
///
///
///
///
public static void llama_sample_grammar(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, SafeLLamaGrammarHandle grammar)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
NativeApi.llama_sample_grammar(ctx, ref st, grammar);
}
///
/// Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
///
///
/// Pointer to LLamaTokenDataArray
///
///
///
[Obsolete("last_tokens_size parameter is no longer needed")]
public static void llama_sample_repetition_penalty(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, Memory last_tokens, ulong last_tokens_size, float penalty)
{
llama_sample_repetition_penalty(ctx, candidates, last_tokens, penalty);
}
///
/// Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
///
///
/// Pointer to LLamaTokenDataArray
///
///
public static void llama_sample_repetition_penalty(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, Memory last_tokens, float penalty)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
using var last_tokens_handle = last_tokens.Pin();
NativeApi.llama_sample_repetition_penalty(ctx, ref st, (int*)last_tokens_handle.Pointer, (ulong)last_tokens.Length, penalty);
}
///
/// Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
///
///
/// Pointer to LLamaTokenDataArray
///
///
///
///
[Obsolete("last_tokens_size parameter is no longer needed")]
public static void llama_sample_frequency_and_presence_penalties(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, Memory last_tokens, ulong last_tokens_size, float alpha_frequency, float alpha_presence)
{
llama_sample_frequency_and_presence_penalties(ctx, candidates, last_tokens, alpha_frequency, alpha_presence);
}
///
/// Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
///
///
/// Pointer to LLamaTokenDataArray
///
///
///
public static void llama_sample_frequency_and_presence_penalties(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, Memory last_tokens, float alpha_frequency, float alpha_presence)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
using var last_tokens_handle = last_tokens.Pin();
NativeApi.llama_sample_frequency_and_presence_penalties(ctx, ref st, (int*)last_tokens_handle.Pointer, (ulong)last_tokens.Length, alpha_frequency, alpha_presence);
}
///
/// Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
///
///
/// Pointer to LLamaTokenDataArray
public static void llama_sample_softmax(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
NativeApi.llama_sample_softmax(ctx, ref st);
}
///
/// Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
///
///
/// Pointer to LLamaTokenDataArray
///
///
public static void llama_sample_top_k(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, int k, ulong min_keep)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
NativeApi.llama_sample_top_k(ctx, ref st, k, min_keep);
}
///
/// Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
///
///
/// Pointer to LLamaTokenDataArray
///
///
public static void llama_sample_top_p(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float p, ulong min_keep)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
NativeApi.llama_sample_top_p(ctx, ref st, p, min_keep);
}
///
/// Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
///
///
/// Pointer to LLamaTokenDataArray
///
///
public static void llama_sample_tail_free(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float z, ulong min_keep)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
NativeApi.llama_sample_tail_free(ctx, ref st, z, min_keep);
}
///
/// Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
///
///
/// Pointer to LLamaTokenDataArray
///
///
public static void llama_sample_typical(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float p, ulong min_keep)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
NativeApi.llama_sample_typical(ctx, ref st, p, min_keep);
}
///
/// Sample with temperature.
/// As temperature increases, the prediction becomes diverse but also vulnerable to hallucinations -- generating tokens that are sensible but not factual
///
///
///
///
public static void llama_sample_temperature(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float temp)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
NativeApi.llama_sample_temperature(ctx, ref st, temp);
}
///
/// Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
///
///
/// A vector of `LLamaTokenData` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
///
public static llama_token llama_sample_token_mirostat(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float tau, float eta, int m, ref float mu)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
return NativeApi.llama_sample_token_mirostat(ctx, ref st, tau, eta, m, ref mu);
}
///
/// Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
///
///
/// A vector of `LLamaTokenData` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
///
public static llama_token llama_sample_token_mirostat_v2(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float tau, float eta, ref float mu)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
return NativeApi.llama_sample_token_mirostat_v2(ctx, ref st, tau, eta, ref mu);
}
///
/// Selects the token with the highest probability.
///
///
/// Pointer to LLamaTokenDataArray
///
public static llama_token llama_sample_token_greedy(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
return NativeApi.llama_sample_token_greedy(ctx, ref st);
}
///
/// Randomly selects a token from the candidates based on their probabilities.
///
///
/// Pointer to LLamaTokenDataArray
///
public static llama_token llama_sample_token(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates)
{
using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st);
return NativeApi.llama_sample_token(ctx, ref st);
}
}
}