using System; #pragma warning disable IDE1006 // Naming Styles namespace LLama.Native { using llama_token = Int32; /// /// Direct translation of the llama.cpp sampling API /// public unsafe class SamplingApi { /// /// Apply grammar rules to candidate tokens /// /// /// /// public static void llama_sample_grammar(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, SafeLLamaGrammarHandle grammar) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); NativeApi.llama_sample_grammar(ctx, ref st, grammar); } /// /// Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. /// /// /// Pointer to LLamaTokenDataArray /// /// /// [Obsolete("last_tokens_size parameter is no longer needed")] public static void llama_sample_repetition_penalty(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, Memory last_tokens, ulong last_tokens_size, float penalty) { llama_sample_repetition_penalty(ctx, candidates, last_tokens, penalty); } /// /// Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. /// /// /// Pointer to LLamaTokenDataArray /// /// public static void llama_sample_repetition_penalty(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, Memory last_tokens, float penalty) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); using var last_tokens_handle = last_tokens.Pin(); NativeApi.llama_sample_repetition_penalty(ctx, ref st, (int*)last_tokens_handle.Pointer, (ulong)last_tokens.Length, penalty); } /// /// Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. /// /// /// Pointer to LLamaTokenDataArray /// /// /// /// [Obsolete("last_tokens_size parameter is no longer needed")] public static void llama_sample_frequency_and_presence_penalties(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, Memory last_tokens, ulong last_tokens_size, float alpha_frequency, float alpha_presence) { llama_sample_frequency_and_presence_penalties(ctx, candidates, last_tokens, alpha_frequency, alpha_presence); } /// /// Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. /// /// /// Pointer to LLamaTokenDataArray /// /// /// public static void llama_sample_frequency_and_presence_penalties(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, Memory last_tokens, float alpha_frequency, float alpha_presence) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); using var last_tokens_handle = last_tokens.Pin(); NativeApi.llama_sample_frequency_and_presence_penalties(ctx, ref st, (int*)last_tokens_handle.Pointer, (ulong)last_tokens.Length, alpha_frequency, alpha_presence); } /// /// Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. /// /// /// Pointer to LLamaTokenDataArray public static void llama_sample_softmax(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); NativeApi.llama_sample_softmax(ctx, ref st); } /// /// Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 /// /// /// Pointer to LLamaTokenDataArray /// /// public static void llama_sample_top_k(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, int k, ulong min_keep) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); NativeApi.llama_sample_top_k(ctx, ref st, k, min_keep); } /// /// Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 /// /// /// Pointer to LLamaTokenDataArray /// /// public static void llama_sample_top_p(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float p, ulong min_keep) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); NativeApi.llama_sample_top_p(ctx, ref st, p, min_keep); } /// /// Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. /// /// /// Pointer to LLamaTokenDataArray /// /// public static void llama_sample_tail_free(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float z, ulong min_keep) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); NativeApi.llama_sample_tail_free(ctx, ref st, z, min_keep); } /// /// Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. /// /// /// Pointer to LLamaTokenDataArray /// /// public static void llama_sample_typical(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float p, ulong min_keep) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); NativeApi.llama_sample_typical(ctx, ref st, p, min_keep); } /// /// Sample with temperature. /// As temperature increases, the prediction becomes diverse but also vulnerable to hallucinations -- generating tokens that are sensible but not factual /// /// /// /// public static void llama_sample_temperature(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float temp) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); NativeApi.llama_sample_temperature(ctx, ref st, temp); } /// /// Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// /// /// A vector of `LLamaTokenData` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. /// The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. /// The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. /// Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. /// public static llama_token llama_sample_token_mirostat(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float tau, float eta, int m, ref float mu) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); return NativeApi.llama_sample_token_mirostat(ctx, ref st, tau, eta, m, ref mu); } /// /// Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// /// /// A vector of `LLamaTokenData` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. /// The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. /// Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. /// public static llama_token llama_sample_token_mirostat_v2(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates, float tau, float eta, ref float mu) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); return NativeApi.llama_sample_token_mirostat_v2(ctx, ref st, tau, eta, ref mu); } /// /// Selects the token with the highest probability. /// /// /// Pointer to LLamaTokenDataArray /// public static llama_token llama_sample_token_greedy(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); return NativeApi.llama_sample_token_greedy(ctx, ref st); } /// /// Randomly selects a token from the candidates based on their probabilities. /// /// /// Pointer to LLamaTokenDataArray /// public static llama_token llama_sample_token(SafeLLamaContextHandle ctx, LLamaTokenDataArray candidates) { using var handle = LLamaTokenDataArrayNative.Create(candidates, out var st); return NativeApi.llama_sample_token(ctx, ref st); } } }