using LLama.Abstractions;
using System;
using System.Text;
namespace LLama.Common
{
///
/// The parameters for initializing a LLama model.
///
public record ModelParams
: IModelParams
{
///
/// Model context size (n_ctx)
///
public int ContextSize { get; set; } = 512;
///
/// the GPU that is used for scratch and small tensors
///
public int MainGpu { get; set; } = 0;
///
/// if true, reduce VRAM usage at the cost of performance
///
public bool LowVram { get; set; } = false;
///
/// Number of layers to run in VRAM / GPU memory (n_gpu_layers)
///
public int GpuLayerCount { get; set; } = 20;
///
/// Seed for the random number generator (seed)
///
public int Seed { get; set; } = 1686349486;
///
/// Use f16 instead of f32 for memory kv (memory_f16)
///
public bool UseFp16Memory { get; set; } = true;
///
/// Use mmap for faster loads (use_mmap)
///
public bool UseMemorymap { get; set; } = true;
///
/// Use mlock to keep model in memory (use_mlock)
///
public bool UseMemoryLock { get; set; } = false;
///
/// Compute perplexity over the prompt (perplexity)
///
public bool Perplexity { get; set; } = false;
///
/// Model path (model)
///
public string ModelPath { get; set; }
///
/// model alias
///
public string ModelAlias { get; set; } = "unknown";
///
/// lora adapter path (lora_adapter)
///
public string LoraAdapter { get; set; } = string.Empty;
///
/// base model path for the lora adapter (lora_base)
///
public string LoraBase { get; set; } = string.Empty;
///
/// Number of threads (-1 = autodetect) (n_threads)
///
public int Threads { get; set; } = Math.Max(Environment.ProcessorCount / 2, 1);
///
/// batch size for prompt processing (must be >=32 to use BLAS) (n_batch)
///
public int BatchSize { get; set; } = 512;
///
/// Whether to convert eos to newline during the inference.
///
public bool ConvertEosToNewLine { get; set; } = false;
///
/// Whether to use embedding mode. (embedding) Note that if this is set to true,
/// The LLamaModel won't produce text response anymore.
///
public bool EmbeddingMode { get; set; } = false;
///
/// how split tensors should be distributed across GPUs
///
public float[]? TensorSplits { get; set; }
///
/// Grouped-Query Attention
///
public int GroupedQueryAttention { get; set; } = 1;
///
/// RMS Norm Epsilon
///
public float RmsNormEpsilon { get; set; } = 5e-6f;
///
/// RoPE base frequency
///
public float RopeFrequencyBase { get; set; } = 10000.0f;
///
/// RoPE frequency scaling factor
///
public float RopeFrequencyScale { get; set; } = 1.0f;
///
/// Use experimental mul_mat_q kernels
///
public bool MulMatQ { get; set; }
///
/// The encoding to use to convert text for the model
///
public Encoding Encoding { get; set; } = Encoding.UTF8;
///
///
///
/// The model path.
[System.Text.Json.Serialization.JsonConstructor]
public ModelParams(string modelPath)
{
ModelPath = modelPath;
}
private ModelParams()
{
// This constructor (default parameterless constructor) is used by Newtonsoft to deserialize!
ModelPath = "";
}
///
///
///
/// The model path.
/// Model context size (n_ctx)
/// Number of layers to run in VRAM / GPU memory (n_gpu_layers)
/// Seed for the random number generator (seed)
/// Whether to use f16 instead of f32 for memory kv (memory_f16)
/// Whether to use mmap for faster loads (use_mmap)
/// Whether to use mlock to keep model in memory (use_mlock)
/// Thether to compute perplexity over the prompt (perplexity)
/// Lora adapter path (lora_adapter)
/// Base model path for the lora adapter (lora_base)
/// Number of threads (-1 = autodetect) (n_threads)
/// Batch size for prompt processing (must be >=32 to use BLAS) (n_batch)
/// Whether to convert eos to newline during the inference.
/// Whether to use embedding mode. (embedding) Note that if this is set to true, The LLamaModel won't produce text response anymore.
/// Grouped-Query Attention
/// RMS Norm Epsilon
/// RoPE base frequency.
/// RoPE frequency scaling factor
/// Use experimental mul_mat_q kernels
/// The encoding to use to convert text for the model
[Obsolete("Use object initializer to set all optional parameters")]
public ModelParams(string modelPath, int contextSize = 512, int gpuLayerCount = 20,
int seed = 1337, bool useFp16Memory = true,
bool useMemorymap = true, bool useMemoryLock = false, bool perplexity = false,
string loraAdapter = "", string loraBase = "", int threads = -1, int batchSize = 512,
bool convertEosToNewLine = false, bool embeddingMode = false,
int groupedQueryAttention = 1, float rmsNormEpsilon = 5e-6f, float ropeFrequencyBase = 10000.0f, float ropeFrequencyScale = 1f, bool mulMatQ = false,
string encoding = "UTF-8")
{
ContextSize = contextSize;
GpuLayerCount = gpuLayerCount;
Seed = seed;
UseFp16Memory = useFp16Memory;
UseMemorymap = useMemorymap;
UseMemoryLock = useMemoryLock;
Perplexity = perplexity;
ModelPath = modelPath;
LoraAdapter = loraAdapter;
LoraBase = loraBase;
Threads = threads == -1 ? Math.Max(Environment.ProcessorCount / 2, 1) : threads;
BatchSize = batchSize;
ConvertEosToNewLine = convertEosToNewLine;
EmbeddingMode = embeddingMode;
GroupedQueryAttention = groupedQueryAttention;
RmsNormEpsilon = rmsNormEpsilon;
RopeFrequencyBase = ropeFrequencyBase;
RopeFrequencyScale = ropeFrequencyScale;
MulMatQ = mulMatQ;
Encoding = Encoding.GetEncoding(encoding);
}
}
}