using System.Runtime.InteropServices; namespace LLama.Native { public static partial class NativeApi { /// /// Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. /// Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. /// /// /// Pointer to LLamaTokenDataArray /// /// /// Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. /// Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. /// Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern unsafe void llama_sample_repetition_penalties(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates, LLamaToken* last_tokens, ulong last_tokens_size, float penalty_repeat, float penalty_freq, float penalty_present); /// /// Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806 /// /// /// A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted. /// A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context. /// Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance. [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern void llama_sample_classifier_free_guidance(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates, SafeLLamaContextHandle guidance_ctx, float scale); /// /// Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. /// /// /// Pointer to LLamaTokenDataArray [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern void llama_sample_softmax(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates); /// /// Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 /// /// /// Pointer to LLamaTokenDataArray /// /// [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern void llama_sample_top_k(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates, int k, ulong min_keep); /// /// Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 /// /// /// Pointer to LLamaTokenDataArray /// /// [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern void llama_sample_top_p(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates, float p, ulong min_keep); /// /// Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841 /// /// /// Pointer to LLamaTokenDataArray /// /// [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern void llama_sample_min_p(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates, float p, ulong min_keep); /// /// Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. /// /// /// Pointer to LLamaTokenDataArray /// /// [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern void llama_sample_tail_free(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates, float z, ulong min_keep); /// /// Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. /// /// /// Pointer to LLamaTokenDataArray /// /// [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern void llama_sample_typical(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates, float p, ulong min_keep); /// /// Modify logits by temperature /// /// /// /// [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern void llama_sample_temp(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates, float temp); /// /// Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// /// /// A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. /// The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. /// The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. /// Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. /// [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern LLamaToken llama_sample_token_mirostat(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates, float tau, float eta, int m, ref float mu); /// /// Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// /// /// A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. /// The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. /// Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. /// [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern LLamaToken llama_sample_token_mirostat_v2(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates, float tau, float eta, ref float mu); /// /// Selects the token with the highest probability. /// /// /// Pointer to LLamaTokenDataArray /// [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern LLamaToken llama_sample_token_greedy(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates); /// /// Randomly selects a token from the candidates based on their probabilities. /// /// /// Pointer to LLamaTokenDataArray /// [DllImport(libraryName, CallingConvention = CallingConvention.Cdecl)] public static extern LLamaToken llama_sample_token(SafeLLamaContextHandle ctx, ref LLamaTokenDataArrayNative candidates); } }