|
|
|
@@ -0,0 +1,172 @@ |
|
|
|
using Microsoft.SemanticKernel.Memory; |
|
|
|
using Microsoft.SemanticKernel; |
|
|
|
using System; |
|
|
|
using System.Collections.Generic; |
|
|
|
using System.Linq; |
|
|
|
using System.Text; |
|
|
|
using System.Threading.Tasks; |
|
|
|
using LLama.Common; |
|
|
|
using LLamaSharp.SemanticKernel.TextEmbedding; |
|
|
|
using Microsoft.SemanticKernel.AI.Embeddings; |
|
|
|
|
|
|
|
namespace LLama.Examples.NewVersion |
|
|
|
{ |
|
|
|
public class SemanticKernelMemory |
|
|
|
{ |
|
|
|
private const string MemoryCollectionName = "SKGitHub"; |
|
|
|
|
|
|
|
public static async Task Run() |
|
|
|
{ |
|
|
|
var loggerFactory = ConsoleLogger.LoggerFactory; |
|
|
|
Console.WriteLine("Example from: https://github.com/microsoft/semantic-kernel/blob/main/dotnet/samples/KernelSyntaxExamples/Example14_SemanticMemory.cs"); |
|
|
|
Console.Write("Please input your model path: "); |
|
|
|
var modelPath = Console.ReadLine(); |
|
|
|
|
|
|
|
var seed = 1337; |
|
|
|
// Load weights into memory |
|
|
|
var parameters = new ModelParams(modelPath) |
|
|
|
{ |
|
|
|
Seed = seed, |
|
|
|
EmbeddingMode = true |
|
|
|
}; |
|
|
|
|
|
|
|
using var model = LLamaWeights.LoadFromFile(parameters); |
|
|
|
var embedding = new LLamaEmbedder(model, parameters); |
|
|
|
|
|
|
|
Console.WriteLine("===================================================="); |
|
|
|
Console.WriteLine("======== Semantic Memory (volatile, in RAM) ========"); |
|
|
|
Console.WriteLine("===================================================="); |
|
|
|
|
|
|
|
/* You can build your own semantic memory combining an Embedding Generator |
|
|
|
* with a Memory storage that supports search by similarity (ie semantic search). |
|
|
|
* |
|
|
|
* In this example we use a volatile memory, a local simulation of a vector DB. |
|
|
|
* |
|
|
|
* You can replace VolatileMemoryStore with Qdrant (see QdrantMemoryStore connector) |
|
|
|
* or implement your connectors for Pinecone, Vespa, Postgres + pgvector, SQLite VSS, etc. |
|
|
|
*/ |
|
|
|
|
|
|
|
var kernelWithCustomDb = Kernel.Builder |
|
|
|
.WithLoggerFactory(ConsoleLogger.LoggerFactory) |
|
|
|
.WithAIService<ITextEmbeddingGeneration>("local-llama-embed", new LLamaSharpEmbeddingGeneration(embedding), true) |
|
|
|
.WithMemoryStorage(new VolatileMemoryStore()) |
|
|
|
.Build(); |
|
|
|
|
|
|
|
await RunExampleAsync(kernelWithCustomDb); |
|
|
|
} |
|
|
|
|
|
|
|
private static async Task RunExampleAsync(IKernel kernel) |
|
|
|
{ |
|
|
|
await StoreMemoryAsync(kernel); |
|
|
|
|
|
|
|
await SearchMemoryAsync(kernel, "How do I get started?"); |
|
|
|
|
|
|
|
/* |
|
|
|
Output: |
|
|
|
|
|
|
|
Query: How do I get started? |
|
|
|
|
|
|
|
Result 1: |
|
|
|
URL: : https://github.com/microsoft/semantic-kernel/blob/main/README.md |
|
|
|
Title : README: Installation, getting started, and how to contribute |
|
|
|
|
|
|
|
Result 2: |
|
|
|
URL: : https://github.com/microsoft/semantic-kernel/blob/main/samples/dotnet-jupyter-notebooks/00-getting-started.ipynb |
|
|
|
Title : Jupyter notebook describing how to get started with the Semantic Kernel |
|
|
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
await SearchMemoryAsync(kernel, "Can I build a chat with SK?"); |
|
|
|
|
|
|
|
/* |
|
|
|
Output: |
|
|
|
|
|
|
|
Query: Can I build a chat with SK? |
|
|
|
|
|
|
|
Result 1: |
|
|
|
URL: : https://github.com/microsoft/semantic-kernel/tree/main/samples/skills/ChatSkill/ChatGPT |
|
|
|
Title : Sample demonstrating how to create a chat skill interfacing with ChatGPT |
|
|
|
|
|
|
|
Result 2: |
|
|
|
URL: : https://github.com/microsoft/semantic-kernel/blob/main/samples/apps/chat-summary-webapp-react/README.md |
|
|
|
Title : README: README associated with a sample chat summary react-based webapp |
|
|
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
await SearchMemoryAsync(kernel, "Jupyter notebook"); |
|
|
|
|
|
|
|
await SearchMemoryAsync(kernel, "README: README associated with a sample chat summary react-based webapp"); |
|
|
|
|
|
|
|
await SearchMemoryAsync(kernel, "Jupyter notebook describing how to pass prompts from a file to a semantic skill or function"); |
|
|
|
} |
|
|
|
|
|
|
|
private static async Task SearchMemoryAsync(IKernel kernel, string query) |
|
|
|
{ |
|
|
|
Console.WriteLine("\nQuery: " + query + "\n"); |
|
|
|
|
|
|
|
var memories = kernel.Memory.SearchAsync(MemoryCollectionName, query, limit: 10, minRelevanceScore: 0.5); |
|
|
|
|
|
|
|
int i = 0; |
|
|
|
await foreach (MemoryQueryResult memory in memories) |
|
|
|
{ |
|
|
|
Console.WriteLine($"Result {++i}:"); |
|
|
|
Console.WriteLine(" URL: : " + memory.Metadata.Id); |
|
|
|
Console.WriteLine(" Title : " + memory.Metadata.Description); |
|
|
|
Console.WriteLine(" Relevance: " + memory.Relevance); |
|
|
|
Console.WriteLine(); |
|
|
|
} |
|
|
|
|
|
|
|
Console.WriteLine("----------------------"); |
|
|
|
} |
|
|
|
|
|
|
|
private static async Task StoreMemoryAsync(IKernel kernel) |
|
|
|
{ |
|
|
|
/* Store some data in the semantic memory. |
|
|
|
* |
|
|
|
* When using Azure Cognitive Search the data is automatically indexed on write. |
|
|
|
* |
|
|
|
* When using the combination of VolatileStore and Embedding generation, SK takes |
|
|
|
* care of creating and storing the index |
|
|
|
*/ |
|
|
|
|
|
|
|
Console.WriteLine("\nAdding some GitHub file URLs and their descriptions to the semantic memory."); |
|
|
|
var githubFiles = SampleData(); |
|
|
|
var i = 0; |
|
|
|
foreach (var entry in githubFiles) |
|
|
|
{ |
|
|
|
var result = await kernel.Memory.SaveReferenceAsync( |
|
|
|
collection: MemoryCollectionName, |
|
|
|
externalSourceName: "GitHub", |
|
|
|
externalId: entry.Key, |
|
|
|
description: entry.Value, |
|
|
|
text: entry.Value); |
|
|
|
|
|
|
|
Console.WriteLine($"#{++i} saved."); |
|
|
|
Console.WriteLine(result); |
|
|
|
} |
|
|
|
|
|
|
|
Console.WriteLine("\n----------------------"); |
|
|
|
} |
|
|
|
|
|
|
|
private static Dictionary<string, string> SampleData() |
|
|
|
{ |
|
|
|
return new Dictionary<string, string> |
|
|
|
{ |
|
|
|
["https://github.com/microsoft/semantic-kernel/blob/main/README.md"] |
|
|
|
= "README: Installation, getting started, and how to contribute", |
|
|
|
["https://github.com/microsoft/semantic-kernel/blob/main/dotnet/notebooks/02-running-prompts-from-file.ipynb"] |
|
|
|
= "Jupyter notebook describing how to pass prompts from a file to a semantic skill or function", |
|
|
|
["https://github.com/microsoft/semantic-kernel/blob/main/dotnet/notebooks//00-getting-started.ipynb"] |
|
|
|
= "Jupyter notebook describing how to get started with the Semantic Kernel", |
|
|
|
["https://github.com/microsoft/semantic-kernel/tree/main/samples/skills/ChatSkill/ChatGPT"] |
|
|
|
= "Sample demonstrating how to create a chat skill interfacing with ChatGPT", |
|
|
|
["https://github.com/microsoft/semantic-kernel/blob/main/dotnet/src/SemanticKernel/Memory/VolatileMemoryStore.cs"] |
|
|
|
= "C# class that defines a volatile embedding store", |
|
|
|
["https://github.com/microsoft/semantic-kernel/blob/main/samples/dotnet/KernelHttpServer/README.md"] |
|
|
|
= "README: How to set up a Semantic Kernel Service API using Azure Function Runtime v4", |
|
|
|
["https://github.com/microsoft/semantic-kernel/blob/main/samples/apps/chat-summary-webapp-react/README.md"] |
|
|
|
= "README: README associated with a sample chat summary react-based webapp", |
|
|
|
}; |
|
|
|
} |
|
|
|
} |
|
|
|
} |