Browse Source

MacOS Remove Metal as is the current default

See on Mac OS enable Metal by default #2901
tags/v0.6.0
SignalRT 2 years ago
parent
commit
096293a026
4 changed files with 247 additions and 137 deletions
  1. +0
    -4
      LLama/LLamaSharp.Runtime.targets
  2. +247
    -133
      LLama/runtimes/ggml-metal.metal
  3. BIN
      LLama/runtimes/libllama-metal.dylib
  4. BIN
      LLama/runtimes/libllama.dylib

+ 0
- 4
LLama/LLamaSharp.Runtime.targets View File

@@ -31,10 +31,6 @@
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
<Link>libllama.dylib</Link>
</None>
<None Include="$(MSBuildThisFileDirectory)runtimes/libllama-metal.dylib">
<CopyToOutputDirectory>None</CopyToOutputDirectory>
<Link>libllama-metal.dylib</Link>
</None>
<None Include="$(MSBuildThisFileDirectory)runtimes/ggml-metal.metal">
<CopyToOutputDirectory>None</CopyToOutputDirectory>
<Link>ggml-metal.metal</Link>


+ 247
- 133
LLama/runtimes/ggml-metal.metal View File

@@ -25,9 +25,9 @@ typedef struct {
} block_q8_0;

kernel void kernel_add(
device const float * src0,
device const float * src1,
device float * dst,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] + src1[tpig];
}
@@ -35,18 +35,18 @@ kernel void kernel_add(
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_add_row(
device const float * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
constant int64_t & nb,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] + src1[tpig % ne00];
dst[tpig] = src0[tpig] + src1[tpig % nb];
}

kernel void kernel_mul(
device const float * src0,
device const float * src1,
device float * dst,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src1[tpig];
}
@@ -54,12 +54,12 @@ kernel void kernel_mul(
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_mul_row(
device const float * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
device const float4 * src0,
device const float4 * src1,
device float4 * dst,
constant int64_t & nb,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src1[tpig % ne00];
dst[tpig] = src0[tpig] * src1[tpig % nb];
}

kernel void kernel_scale(
@@ -133,19 +133,24 @@ kernel void kernel_soft_max(
threadgroup_barrier(mem_flags::mem_threadgroup);
}

// broadcast
if (tpitg[0] == 0) {
buf[0] = buf[0];
}
//// broadcast - not needed. There is a threadgroup barrier above in the last iteration of
// the loop, and when that is done, buf[0] has the correct (synchronized) value
//if (tpitg[0] == 0) {
// buf[0] = buf[0];
//}

threadgroup_barrier(mem_flags::mem_threadgroup);
//threadgroup_barrier(mem_flags::mem_threadgroup);

const float max = buf[0];

// parallel sum
buf[tpitg[0]] = 0.0f;
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
buf[tpitg[0]] += exp(psrc0[i00] - max);
const float exp_psrc0 = exp(psrc0[i00] - max);
buf[tpitg[0]] += exp_psrc0;
// Remember the result of exp here. exp is expensive, so we really do not
// whish to compute it twice.
pdst[i00] = exp_psrc0;
}

// reduce
@@ -157,17 +162,18 @@ kernel void kernel_soft_max(
threadgroup_barrier(mem_flags::mem_threadgroup);
}

// broadcast
if (tpitg[0] == 0) {
buf[0] = buf[0];
}
// broadcast - not needed, see above
//// broadcast
//if (tpitg[0] == 0) {
// buf[0] = buf[0];
//}

threadgroup_barrier(mem_flags::mem_threadgroup);
//threadgroup_barrier(mem_flags::mem_threadgroup);

const float sum = buf[0];

for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
pdst[i00] = exp(psrc0[i00] - max) / sum;
pdst[i00] /= sum;
}
}

@@ -214,25 +220,17 @@ kernel void kernel_norm(
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg == 0) {
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float mean = sum[0];
const float mean = sum[0] / ne00;

// recenter
// recenter and VARIANCE
threadgroup_barrier(mem_flags::mem_threadgroup);
device float * y = dst + tgpig*ne00;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = x[i00] - mean;
}

// VARIANCE
// parallel sum
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = x[i00] - mean;
sum[tpitg] += y[i00] * y[i00];
}

// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
@@ -241,12 +239,7 @@ kernel void kernel_norm(
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg == 0) {
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float variance = sum[0];
const float variance = sum[0] / ne00;

const float scale = 1.0f/sqrt(variance + eps);
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
@@ -254,7 +247,6 @@ kernel void kernel_norm(
}
}


kernel void kernel_rms_norm(
device const void * src0,
device float * dst,
@@ -435,6 +427,8 @@ kernel void kernel_mul_mat_q4_1_f32(
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
}

#define NB_Q8_0 8

kernel void kernel_mul_mat_q8_0_f32(
device const void * src0,
device const float * src1,
@@ -463,30 +457,30 @@ kernel void kernel_mul_mat_q8_0_f32(
device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;

float yl[16];
float yl[NB_Q8_0];
float sumf[nr]={0.f};

const int ix = tiisg/2;
const int il = tiisg%2;
const int ix = tiisg/4;
const int il = tiisg%4;

device const float * yb = y + ix * QK8_0 + 16*il;
device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;

// each thread in a SIMD group deals with half a block.
for (int ib = ix; ib < nb; ib += nw/2) {
for (int i = 0; i < 16; ++i) {
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
for (int ib = ix; ib < nb; ib += nw/4) {
for (int i = 0; i < NB_Q8_0; ++i) {
yl[i] = yb[i];
}

for (int row = 0; row < nr; row++) {
device const int8_t * qs = x[ib+row*nb].qs + 16*il;
device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
float sumq = 0.f;
for (int iq = 0; iq < 16; ++iq) {
for (int iq = 0; iq < NB_Q8_0; ++iq) {
sumq += qs[iq] * yl[iq];
}
sumf[row] += sumq*x[ib+row*nb].d;
}

yb += QK8_0 * 16;
yb += NB_Q8_0 * nw;
}

for (int row = 0; row < nr; ++row) {
@@ -497,7 +491,7 @@ kernel void kernel_mul_mat_q8_0_f32(
}
}

kernel void kernel_mul_mat_f16_f32(
kernel void kernel_mul_mat_f16_f32_1row(
device const char * src0,
device const char * src1,
device float * dst,
@@ -515,11 +509,8 @@ kernel void kernel_mul_mat_f16_f32(
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpig[[thread_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]]) {
uint tiisg[[thread_index_in_simdgroup]]) {

const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
@@ -528,23 +519,100 @@ kernel void kernel_mul_mat_f16_f32(
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);

sum[tpitg.x] = 0.0f;

for (int i = tpitg.x; i < ne00; i += tptg.x) {
sum[tpitg.x] += (float) x[i] * (float) y[i];
float sumf = 0;
if (ne00 < 128) {
for (int i = tiisg; i < ne00; i += 32) {
sumf += (float) x[i] * (float) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
} else {
device const half4 * x4 = (device const half4 *) x;
device const float4 * y4 = (device const float4 *) y;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}

// accumulate the sum from all threads in the threadgroup
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = tptg.x/2; i > 0; i /= 2) {
if (tpitg.x < i) {
sum[tpitg.x] += sum[tpitg.x + i];
}

#define N_F16_F32 4

kernel void kernel_mul_mat_f16_f32(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {

const int64_t r0 = tgpig.x;
const int64_t rb = tgpig.y*N_F16_F32;
const int64_t im = tgpig.z;

device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);

if (ne00 < 128) {
for (int row = 0; row < N_F16_F32; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}

device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);

float sumf = 0;
for (int i = tiisg; i < ne00; i += 32) {
sumf += (float) x[i] * (float) y[i];
}

float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
} else {
device const half4 * x4 = (device const half4 *)x;
for (int row = 0; row < N_F16_F32; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}

device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
device const float4 * y4 = (device const float4 *) y;

float sumf = 0;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
}

if (tpitg.x == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
}

@@ -614,25 +682,27 @@ kernel void kernel_rope(
constant int & mode,
constant float & freq_base,
constant float & freq_scale,
uint3 tpig[[thread_position_in_grid]]) {
const int64_t i3 = tpig[2];
const int64_t i2 = tpig[1];
const int64_t i1 = tpig[0];
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
const int64_t i3 = tgpig[2];
const int64_t i2 = tgpig[1];
const int64_t i1 = tgpig[0];

const bool is_neox = mode & 2;
const float theta_scale = pow(freq_base, -2.0f/n_dims);

const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);

float theta = freq_scale * (float)p;
const float theta_0 = freq_scale * (float)p;
const float inv_ndims = -1.f/n_dims;

if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {

const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
const float cos_theta = cos(theta);
const float sin_theta = sin(theta);

theta *= theta_scale;

device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);

@@ -644,12 +714,12 @@ kernel void kernel_rope(
}
} else {
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 0; ic < n_dims; ic += 2) {
for (int64_t ic = 2*tiitg; ic < n_dims; ic += 2*tptg.x) {

const float theta = theta_0 * pow(freq_base, inv_ndims*ic - ib);
const float cos_theta = cos(theta);
const float sin_theta = sin(theta);

theta *= theta_scale;

const int64_t i0 = ib*n_dims + ic/2;

device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
@@ -1053,31 +1123,40 @@ kernel void kernel_mul_mat_q3_K_f32(
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;

float yl[16];
float yl[32];

const uint16_t kmask1 = 0x0303;
const uint16_t kmask1 = 0x3030;
const uint16_t kmask2 = 0x0f0f;

const int tid = tiisg/2;
const int ix = tiisg%2;
const int ip = tid/8; // 0 or 1
const int il = tid/2 - 4*ip; // 0...3
const int tid = tiisg/4;
const int ix = tiisg%4;
const int ip = tid/4; // 0 or 1
const int il = 2*((tid%4)/2); // 0 or 2
const int ir = tid%2;
const int n = 8;
const int l0 = n*ir;

const uint16_t m1 = 1 << (4*ip + il);
const uint16_t m2 = m1 << 8;
// One would think that the Metal compiler would figure out that ip and il can only have
// 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
// with these two tales.
//
// Possible masks for the high bit
const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
{0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
{0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
{0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2

// Possible masks for the low 2 bits
const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};

const ushort4 hm = mm[2*ip + il/2];

const int shift = 2*il;
const uint16_t qm1 = 0x0003 << shift;
const uint16_t qm2 = 0x0300 << shift;
const int32_t v1 = 4 << shift;
const int32_t v2 = 1024 << shift;
const float v1 = il == 0 ? 4.f : 64.f;
const float v2 = 4.f * v1;

const uint16_t s_shift1 = 4*ip;
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
const int ik = 4 + (il%2);
const uint16_t s_shift2 = s_shift1 + il;

const int q_offset = 32*ip + l0;
const int y_offset = 128*ip + 32*il + l0;
@@ -1086,12 +1165,19 @@ kernel void kernel_mul_mat_q3_K_f32(

device const float * y1 = yy + ix*QK_K + y_offset;

float sumf1[2] = {0.f}, sumf2[2] = {0.f};
for (int i = ix; i < nb; i += 2) {
uint32_t scales32, aux32;
thread uint16_t * scales16 = (thread uint16_t *)&scales32;
thread const int8_t * scales = (thread const int8_t *)&scales32;

float sumf1[2] = {0.f};
float sumf2[2] = {0.f};
for (int i = ix; i < nb; i += 4) {

for (int l = 0; l < 8; ++l) {
yl[l+0] = y1[l+ 0];
yl[l+8] = y1[l+16];
yl[l+ 0] = y1[l+ 0];
yl[l+ 8] = y1[l+16];
yl[l+16] = y1[l+32];
yl[l+24] = y1[l+48];
}

device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
@@ -1102,27 +1188,43 @@ kernel void kernel_mul_mat_q3_K_f32(
for (int row = 0; row < 2; ++row) {

const float d_all = (float)dh[0];
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));

float s1 = 0, s2 = 0;
scales16[0] = a[4];
scales16[1] = a[5];
aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
scales16[0] = a[il+0];
scales16[1] = a[il+1];
scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;

float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
for (int l = 0; l < n; l += 2) {
const uint16_t qs = q[l/2];
s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1));
s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2));
const int32_t qs = q[l/2];
s1 += yl[l+0] * (qs & qm[il/2][0]);
s2 += yl[l+1] * (qs & qm[il/2][1]);
s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
s4 += yl[l+16] * (qs & qm[il/2][2]);
s5 += yl[l+17] * (qs & qm[il/2][3]);
s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
}
float d = d_all * (s1 + 1.f/256.f * s2);
sumf1[row] += d * scales[0];
sumf2[row] += d;
float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
sumf1[row] += d1 * (scales[0] - 32);
sumf2[row] += d2 * (scales[2] - 32);

s1 = s2 = 0;
s1 = s2 = s3 = s4 = s5 = s6 = 0;
for (int l = 0; l < n; l += 2) {
const uint16_t qs = q[l/2+8];
s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1));
s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2));
const int32_t qs = q[l/2+8];
s1 += yl[l+8] * (qs & qm[il/2][0]);
s2 += yl[l+9] * (qs & qm[il/2][1]);
s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
s4 += yl[l+24] * (qs & qm[il/2][2]);
s5 += yl[l+25] * (qs & qm[il/2][3]);
s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
}
d = d_all * (s1 + 1.f/256.f * s2);
sumf1[row] += d * scales[1];
sumf2[row] += d;
d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
sumf1[row] += d1 * (scales[1] - 32);
sumf2[row] += d2 * (scales[3] - 32);

q += step;
h += step;
@@ -1131,17 +1233,20 @@ kernel void kernel_mul_mat_q3_K_f32(

}

y1 += 2 * QK_K;
y1 += 4 * QK_K;

}

for (int row = 0; row < 2; ++row) {
const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift);
const float tot = simd_sum(sumf);
if (tiisg == 0) {
dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = tot;
const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
sumf1[row] = simd_sum(sumf);
}
if (tiisg == 0) {
for (int row = 0; row < 2; ++row) {
dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = sumf1[row];
}
}

}
#else
kernel void kernel_mul_mat_q3_K_f32(
@@ -1244,7 +1349,8 @@ kernel void kernel_mul_mat_q4_K_f32(
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int r2 = tgpig.z;
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
//const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
const int first_row = r0 * N_DST;
const int ib_row = first_row * nb;
const uint offset0 = r2/gqa*(nb*ne0);
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
@@ -1493,17 +1599,25 @@ kernel void kernel_mul_mat_q5_K_f32(
sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);

float4 acc = {0.f, 0.f, 0.f, 0.f};
float4 acc1 = {0.f};
float4 acc2 = {0.f};
for (int l = 0; l < n; ++l) {
uint8_t h = qh[l];
acc[0] += yl[l+0] * ((uint16_t)(q1[l] & 0x0F) + (h & hm1 ? 16 : 0));
acc[1] += yl[l+8] * ((uint16_t)(q1[l] & 0xF0) + (h & hm2 ? 256 : 0));
acc[2] += yh[l+0] * ((uint16_t)(q2[l] & 0x0F) + (h & hm3 ? 16 : 0));
acc[3] += yh[l+8] * ((uint16_t)(q2[l] & 0xF0) + (h & hm4 ? 256 : 0));
acc1[0] += yl[l+0] * (q1[l] & 0x0F);
acc1[1] += yl[l+8] * (q1[l] & 0xF0);
acc1[2] += yh[l+0] * (q2[l] & 0x0F);
acc1[3] += yh[l+8] * (q2[l] & 0xF0);
acc2[0] += h & hm1 ? yl[l+0] : 0.f;
acc2[1] += h & hm2 ? yl[l+8] : 0.f;
acc2[2] += h & hm3 ? yh[l+0] : 0.f;
acc2[3] += h & hm4 ? yh[l+8] : 0.f;
}
const float dall = dh[0];
const float dmin = dh[1];
sumf[row] += dall * (acc[0] * sc8[0] + acc[1] * sc8[1] * 1.f/16.f + acc[2] * sc8[4] + acc[3] * sc8[5] * 1.f/16.f) -
sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
sc8[4] * (acc1[2] + 16.f*acc2[2]) +
sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);

q1 += step;


BIN
LLama/runtimes/libllama-metal.dylib View File


BIN
LLama/runtimes/libllama.dylib View File


Loading…
Cancel
Save