You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

4 years ago
4 years ago
4 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. import tensorflow as tf
  2. from bert_base.train.bert_lstm_ner import train
  3. flags = tf.flags
  4. FLAGS = flags.FLAGS
  5. #输入输出地址
  6. flags.DEFINE_string('data_dir', 'data', '数据集地址')
  7. flags.DEFINE_string('output_dir', 'output', '输出地址')
  8. #Bert相关参数
  9. flags.DEFINE_string('bert_config_file', 'chinese_L-12_H-768_A-12/bert_config.json', 'Bert配置文件')
  10. flags.DEFINE_string('vocab_file', 'chinese_L-12_H-768_A-12/vocab.txt','vocab_file')
  11. flags.DEFINE_string('init_checkpoint','chinese_L-12_H-768_A-12/bert_model.ckpt', 'init_checkpoint')
  12. #训练和校验的相关参数
  13. flags.DEFINE_bool('do_train', False, '是否开始训练')
  14. flags.DEFINE_bool('do_dev', False, '是否开始校验')
  15. flags.DEFINE_bool('do_test', True, '是否开始测试')
  16. flags.DEFINE_bool('do_lower_case', True, '是否转换小写')
  17. #模型相关的
  18. flags.DEFINE_integer('lstm_size', 128, 'lstm_size')
  19. flags.DEFINE_integer('num_layers', 1, 'num_layers')
  20. flags.DEFINE_integer('max_seq_length', 128, 'max_seq_length')
  21. flags.DEFINE_integer('train_batch_size', 64, 'train_batch_size')
  22. flags.DEFINE_integer('dev_batch_size',64, 'dev_batch_size')
  23. flags.DEFINE_integer('test_batch_size', 32, 'test_batch_size')
  24. flags.DEFINE_integer('save_checkpoints_steps', 500, 'save_checkpoints_steps')
  25. flags.DEFINE_integer('iterations_per_loop', 500, 'iterations_per_loop')
  26. flags.DEFINE_integer('save_summary_steps', 500, 'save_summary_steps')
  27. flags.DEFINE_string('cell', 'lstm', 'cell')
  28. flags.DEFINE_float('learning_rate', 5e-5, 'learning_rate')
  29. flags.DEFINE_float('dropout_rate', 0.5, 'dropout_rate')
  30. flags.DEFINE_float('clip', 0.5, 'clip')
  31. flags.DEFINE_float('num_train_epochs', 10.0, 'num_train_epochs')
  32. flags.DEFINE_float("warmup_proportion", 0.1,'warmup_proportion')
  33. def train_ner():
  34. train(FLAGS)
  35. if __name__ == "__main__":
  36. train_ner()

通过对新冠疫情相关信息收集,进行分类、归纳,取得事件之间的联系,可以构成一个丰富的新冠信息知识图谱。新冠信息知识图谱的构建能够充分挖掘信息价值,为人们提供直观的参考依据。本项目基于NEO4J图数据库,来进行COVID-19病例活动行径信息的知识图谱构建与应用,达到追溯传播途径、疫情防控的目的·。