|
- # Copyright 2021-2022 The Alibaba Fundamental Vision Team Authors. All rights reserved.
- import unittest
-
- import cv2
-
- from modelscope.outputs import OutputKeys
- from modelscope.pipelines import pipeline
- from modelscope.pipelines.base import Pipeline
- from modelscope.utils.constant import Tasks
- from modelscope.utils.logger import get_logger
- from modelscope.utils.test_utils import test_level
-
- logger = get_logger()
-
-
- class ProductSegmentationTest(unittest.TestCase):
-
- def setUp(self) -> None:
- self.model_id = 'damo/cv_F3Net_product-segmentation'
- self.input = {
- 'input_path': 'data/test/images/product_segmentation.jpg'
- }
-
- def pipeline_inference(self, pipeline: Pipeline, input: str):
- result = pipeline(input)
- cv2.imwrite('test_product_segmentation_mask.jpg',
- result[OutputKeys.MASKS])
- logger.info('test done')
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_modelhub(self):
- product_segmentation = pipeline(
- Tasks.product_segmentation, model=self.model_id)
- self.pipeline_inference(product_segmentation, self.input)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_modelhub_default_model(self):
- product_segmentation = pipeline(Tasks.product_segmentation)
- self.pipeline_inference(product_segmentation, self.input)
-
-
- if __name__ == '__main__':
- unittest.main()
|