|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import unittest
- from distutils.version import LooseVersion
-
- import cv2
- import easycv
- import numpy as np
- from PIL import Image
-
- from modelscope.outputs import OutputKeys
- from modelscope.pipelines import pipeline
- from modelscope.utils.constant import Tasks
- from modelscope.utils.cv.image_utils import semantic_seg_masks_to_image
- from modelscope.utils.demo_utils import DemoCompatibilityCheck
- from modelscope.utils.test_utils import test_level
-
-
- class EasyCVSegmentationPipelineTest(unittest.TestCase,
- DemoCompatibilityCheck):
- img_path = 'data/test/images/image_segmentation.jpg'
-
- def setUp(self) -> None:
- self.task = Tasks.image_segmentation
- self.model_id = 'damo/cv_segformer-b0_image_semantic-segmentation_coco-stuff164k'
-
- def _internal_test_(self, model_id):
- semantic_seg = pipeline(task=Tasks.image_segmentation, model=model_id)
- outputs = semantic_seg(self.img_path)
-
- draw_img = semantic_seg_masks_to_image(outputs[OutputKeys.MASKS])
- cv2.imwrite('result.jpg', draw_img)
- print('test ' + model_id + ' DONE')
-
- def _internal_test_batch_(self, model_id, num_samples=2, batch_size=2):
- # TODO: support in the future
- img = np.asarray(Image.open(self.img_path))
- num_samples = num_samples
- batch_size = batch_size
- semantic_seg = pipeline(
- task=Tasks.image_segmentation,
- model=model_id,
- batch_size=batch_size)
- outputs = semantic_seg([self.img_path] * num_samples)
-
- self.assertEqual(semantic_seg.predict_op.batch_size, batch_size)
- self.assertEqual(len(outputs), num_samples)
-
- for output in outputs:
- self.assertListEqual(
- list(img.shape)[:2], list(output['seg_pred'].shape))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_segformer_b0(self):
- model_id = 'damo/cv_segformer-b0_image_semantic-segmentation_coco-stuff164k'
- self._internal_test_(model_id)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_segformer_b1(self):
- model_id = 'damo/cv_segformer-b1_image_semantic-segmentation_coco-stuff164k'
- self._internal_test_(model_id)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_segformer_b2(self):
- model_id = 'damo/cv_segformer-b2_image_semantic-segmentation_coco-stuff164k'
- self._internal_test_(model_id)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_segformer_b3(self):
- model_id = 'damo/cv_segformer-b3_image_semantic-segmentation_coco-stuff164k'
- self._internal_test_(model_id)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_segformer_b4(self):
- model_id = 'damo/cv_segformer-b4_image_semantic-segmentation_coco-stuff164k'
- self._internal_test_(model_id)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_segformer_b5(self):
- model_id = 'damo/cv_segformer-b5_image_semantic-segmentation_coco-stuff164k'
- self._internal_test_(model_id)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_demo_compatibility(self):
- self.compatibility_check()
-
-
- if __name__ == '__main__':
- unittest.main()
|