|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
- from collections import OrderedDict
-
- from modelscope.exporters import Exporter, TorchModelExporter
- from modelscope.models import Model
- from modelscope.utils.test_utils import test_level
-
-
- class TestExportSbertSequenceClassification(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
- self.model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
-
- def tearDown(self):
- shutil.rmtree(self.tmp_dir)
- super().tearDown()
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_export_sbert_sequence_classification(self):
- model = Model.from_pretrained(self.model_id)
- print(
- Exporter.from_model(model).export_onnx(
- shape=(2, 256), output_dir=self.tmp_dir))
- print(
- TorchModelExporter.from_model(model).export_torch_script(
- shape=(2, 256), output_dir=self.tmp_dir))
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_export_outer_module(self):
- from transformers import BertForSequenceClassification, BertTokenizerFast
- model = BertForSequenceClassification.from_pretrained(
- 'bert-base-uncased')
- tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
- dummy_inputs = tokenizer(
- tokenizer.unk_token,
- padding='max_length',
- max_length=256,
- return_tensors='pt')
- dynamic_axis = {0: 'batch', 1: 'sequence'}
- inputs = OrderedDict([
- ('input_ids', dynamic_axis),
- ('attention_mask', dynamic_axis),
- ('token_type_ids', dynamic_axis),
- ])
- outputs = OrderedDict({'logits': {0: 'batch'}})
- output_files = TorchModelExporter().export_onnx(
- model=model,
- dummy_inputs=dummy_inputs,
- inputs=inputs,
- outputs=outputs,
- output_dir='/tmp')
- print(output_files)
- output_files = TorchModelExporter().export_torch_script(
- model=model,
- dummy_inputs=dummy_inputs,
- output_dir='/tmp',
- strict=False)
- print(output_files)
-
-
- if __name__ == '__main__':
- unittest.main()
|