|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import os.path as osp
- import tempfile
- import unittest
- import zipfile
-
- from maas_lib.fileio import File
- from maas_lib.models.nlp import SequenceClassificationModel
- from maas_lib.pipelines import SequenceClassificationPipeline, pipeline
- from maas_lib.preprocessors import SequenceClassificationPreprocessor
-
-
- class SequenceClassificationTest(unittest.TestCase):
-
- def predict(self, pipeline: SequenceClassificationPipeline):
- from easynlp.appzoo import load_dataset
-
- set = load_dataset('glue', 'sst2')
- data = set['test']['sentence'][:3]
-
- results = pipeline(data[0])
- print(results)
- results = pipeline(data[1])
- print(results)
-
- print(data)
-
- def test_run(self):
- model_url = 'https://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com' \
- '/release/easynlp_modelzoo/alibaba-pai/bert-base-sst2.zip'
- with tempfile.TemporaryDirectory() as tmp_dir:
- tmp_file = osp.join(tmp_dir, 'bert-base-sst2.zip')
- with open(tmp_file, 'wb') as ofile:
- ofile.write(File.read(model_url))
- with zipfile.ZipFile(tmp_file, 'r') as zipf:
- zipf.extractall(tmp_dir)
- path = osp.join(tmp_dir, 'bert-base-sst2')
- print(path)
- model = SequenceClassificationModel(path)
- preprocessor = SequenceClassificationPreprocessor(
- path, first_sequence='sentence', second_sequence=None)
- pipeline1 = SequenceClassificationPipeline(model, preprocessor)
- self.predict(pipeline1)
- pipeline2 = pipeline(
- 'text-classification', model=model, preprocessor=preprocessor)
- print(pipeline2('Hello world!'))
-
-
- if __name__ == '__main__':
- unittest.main()
|