|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import shutil
- import unittest
- import zipfile
- from pathlib import Path
-
- from modelscope.fileio import File
- from modelscope.models import Model
- from modelscope.models.nlp import BertForSequenceClassification
- from modelscope.pipelines import SequenceClassificationPipeline, pipeline
- from modelscope.preprocessors import SequenceClassificationPreprocessor
- from modelscope.pydatasets import PyDataset
- from modelscope.utils.constant import Hubs, Tasks
- from modelscope.utils.hub import get_model_cache_dir
- from modelscope.utils.test_utils import test_level
-
-
- class SequenceClassificationTest(unittest.TestCase):
-
- def setUp(self) -> None:
- self.model_id = 'damo/bert-base-sst2'
- # switch to False if downloading everytime is not desired
- purge_cache = True
- if purge_cache:
- shutil.rmtree(
- get_model_cache_dir(self.model_id), ignore_errors=True)
-
- def predict(self, pipeline_ins: SequenceClassificationPipeline):
- from easynlp.appzoo import load_dataset
-
- set = load_dataset('glue', 'sst2')
- data = set['test']['sentence'][:3]
-
- results = pipeline_ins(data[0])
- print(results)
- results = pipeline_ins(data[1])
- print(results)
-
- print(data)
-
- def printDataset(self, dataset: PyDataset):
- for i, r in enumerate(dataset):
- if i > 10:
- break
- print(r)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run(self):
- model_url = 'https://atp-modelzoo-sh.oss-cn-shanghai.aliyuncs.com' \
- '/release/easynlp_modelzoo/alibaba-pai/bert-base-sst2.zip'
- cache_path_str = r'.cache/easynlp/bert-base-sst2.zip'
- cache_path = Path(cache_path_str)
-
- if not cache_path.exists():
- cache_path.parent.mkdir(parents=True, exist_ok=True)
- cache_path.touch(exist_ok=True)
- with cache_path.open('wb') as ofile:
- ofile.write(File.read(model_url))
-
- with zipfile.ZipFile(cache_path_str, 'r') as zipf:
- zipf.extractall(cache_path.parent)
- path = r'.cache/easynlp/'
- model = BertForSequenceClassification(path)
- preprocessor = SequenceClassificationPreprocessor(
- path, first_sequence='sentence', second_sequence=None)
- pipeline1 = SequenceClassificationPipeline(model, preprocessor)
- self.predict(pipeline1)
- pipeline2 = pipeline(
- Tasks.text_classification, model=model, preprocessor=preprocessor)
- print(pipeline2('Hello world!'))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_with_model_from_modelhub(self):
- model = Model.from_pretrained(self.model_id)
- preprocessor = SequenceClassificationPreprocessor(
- model.model_dir, first_sequence='sentence', second_sequence=None)
- pipeline_ins = pipeline(
- task=Tasks.text_classification,
- model=model,
- preprocessor=preprocessor)
- self.predict(pipeline_ins)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_with_model_name(self):
- text_classification = pipeline(
- task=Tasks.text_classification, model=self.model_id)
- result = text_classification(
- PyDataset.load(
- 'glue', name='sst2', target='sentence', hub=Hubs.huggingface))
- self.printDataset(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_default_model(self):
- text_classification = pipeline(task=Tasks.text_classification)
- result = text_classification(
- PyDataset.load(
- 'glue', name='sst2', target='sentence', hub=Hubs.huggingface))
- self.printDataset(result)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_dataset(self):
- model = Model.from_pretrained(self.model_id)
- preprocessor = SequenceClassificationPreprocessor(
- model.model_dir, first_sequence='sentence', second_sequence=None)
- text_classification = pipeline(
- Tasks.text_classification, model=model, preprocessor=preprocessor)
- # loaded from huggingface dataset
- # TODO: rename parameter as dataset_name and subset_name
- dataset = PyDataset.load(
- 'glue', name='sst2', target='sentence', hub=Hubs.huggingface)
- result = text_classification(dataset)
- self.printDataset(result)
-
-
- if __name__ == '__main__':
- unittest.main()
|