|
- # Copyright (c) Alibaba, Inc. and its affiliates.
-
- import os
- from typing import Any, Dict, Optional
-
- from ....metainfo import Models
- from ....preprocessors.space.fields.gen_field import MultiWOZBPETextField
- from ....trainers.nlp.space.trainer.gen_trainer import MultiWOZTrainer
- from ....utils.config import Config
- from ....utils.constant import ModelFile, Tasks
- from ...base import Model, Tensor
- from ...builder import MODELS
- from .model.generator import Generator
- from .model.model_base import SpaceModelBase
-
- __all__ = ['SpaceForDialogModeling']
-
-
- @MODELS.register_module(Tasks.dialog_modeling, module_name=Models.space)
- class SpaceForDialogModeling(Model):
-
- def __init__(self, model_dir: str, *args, **kwargs):
- """initialize the test generation model from the `model_dir` path.
-
- Args:
- model_dir (str): the model path.
- """
-
- super().__init__(model_dir, *args, **kwargs)
- self.model_dir = model_dir
- self.config = kwargs.pop(
- 'config',
- Config.from_file(
- os.path.join(self.model_dir, ModelFile.CONFIGURATION)))
- self.text_field = kwargs.pop(
- 'text_field',
- MultiWOZBPETextField(self.model_dir, config=self.config))
- self.generator = Generator.create(self.config, reader=self.text_field)
- self.model = SpaceModelBase.create(
- model_dir=model_dir,
- config=self.config,
- reader=self.text_field,
- generator=self.generator)
-
- def to_tensor(array):
- """
- numpy array -> tensor
- """
- import torch
- array = torch.tensor(array)
- return array.cuda() if self.config.use_gpu else array
-
- self.trainer = MultiWOZTrainer(
- model=self.model,
- to_tensor=to_tensor,
- config=self.config,
- reader=self.text_field,
- evaluator=None)
- self.trainer.load()
-
- def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]:
- """return the result by the model
-
- Args:
- input (Dict[str, Any]): the preprocessed data
-
- Returns:
- Dict[str, np.ndarray]: results
- Example:
- {
- 'predictions': array([1]), # lable 0-negative 1-positive
- 'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32),
- 'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value
- }
- """
-
- turn = {'user': input['user']}
- old_pv_turn = input['history']
-
- pv_turn = self.trainer.forward(turn=turn, old_pv_turn=old_pv_turn)
-
- return pv_turn
|