|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import glob
- import os
- import shutil
- import tempfile
- import unittest
-
- import json
- import numpy as np
- import torch
- from torch import nn
-
- from modelscope.metainfo import Trainers
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import LogKeys, ModelFile
- from modelscope.utils.test_utils import create_dummy_test_dataset
-
- dummy_dataset = create_dummy_test_dataset(
- np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
-
-
- class DummyModel(nn.Module):
-
- def __init__(self):
- super().__init__()
- self.linear = nn.Linear(5, 4)
- self.bn = nn.BatchNorm1d(4)
-
- def forward(self, feat, labels):
- x = self.linear(feat)
-
- x = self.bn(x)
- loss = torch.sum(x)
- return dict(logits=x, loss=loss)
-
-
- class TensorboardHookTest(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir)
-
- def test_tensorboard_hook(self):
- json_cfg = {
- 'task': 'image_classification',
- 'train': {
- 'work_dir': self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- },
- 'optimizer': {
- 'type': 'SGD',
- 'lr': 0.01
- },
- 'lr_scheduler': {
- 'type': 'StepLR',
- 'step_size': 2,
- },
- 'hooks': [{
- 'type': 'TensorboardHook',
- 'interval': 2
- }]
- }
- }
-
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- trainer_name = Trainers.default
- kwargs = dict(
- cfg_file=config_path,
- model=DummyModel(),
- data_collator=None,
- train_dataset=dummy_dataset,
- max_epochs=2)
-
- trainer = build_trainer(trainer_name, kwargs)
- trainer.train()
- tb_out_dir = os.path.join(self.tmp_dir, 'tensorboard_output')
-
- events_files = glob.glob(
- os.path.join(tb_out_dir, 'events.out.tfevents.*'))
- self.assertEqual(len(events_files), 1)
-
- from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
- ea = EventAccumulator(events_files[0])
- ea.Reload()
- self.assertEqual(len(ea.Scalars(LogKeys.LOSS)), 10)
- self.assertEqual(len(ea.Scalars(LogKeys.LR)), 10)
- for i in range(5):
- self.assertAlmostEqual(
- ea.Scalars(LogKeys.LR)[i].value, 0.01, delta=0.001)
- for i in range(5, 10):
- self.assertAlmostEqual(
- ea.Scalars(LogKeys.LR)[i].value, 0.01, delta=0.0001)
-
-
- if __name__ == '__main__':
- unittest.main()
|