|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.metainfo import Metrics
- from modelscope.models.base import Model
- from modelscope.models.nlp.sequence_classification import \
- SbertForSequenceClassification
- from modelscope.msdatasets import MsDataset
- from modelscope.pipelines import pipeline
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import ModelFile, Tasks
- from modelscope.utils.hub import read_config
- from modelscope.utils.test_utils import test_level
-
-
- class TestTrainerWithNlp(unittest.TestCase):
- sentence1 = '今天气温比昨天高么?'
- sentence2 = '今天湿度比昨天高么?'
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- self.dataset = MsDataset.load(
- 'afqmc_small', namespace='userxiaoming', split='train')
-
- def tearDown(self):
- shutil.rmtree(self.tmp_dir)
- super().tearDown()
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_trainer(self):
- model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
- kwargs = dict(
- model=model_id,
- train_dataset=self.dataset,
- eval_dataset=self.dataset,
- work_dir=self.tmp_dir,
- model_revision='beta')
-
- trainer = build_trainer(default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(10):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- output_files = os.listdir(
- os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR))
- self.assertIn(ModelFile.CONFIGURATION, output_files)
- self.assertIn(ModelFile.TORCH_MODEL_BIN_FILE, output_files)
- copy_src_files = os.listdir(trainer.model_dir)
-
- print(f'copy_src_files are {copy_src_files}')
- print(f'output_files are {output_files}')
- for item in copy_src_files:
- if not item.startswith('.'):
- self.assertIn(item, output_files)
-
- def pipeline_sentence_similarity(model_dir):
- model = Model.from_pretrained(model_dir)
- pipeline_ins = pipeline(
- task=Tasks.sentence_similarity, model=model)
- print(pipeline_ins(input=(self.sentence1, self.sentence2)))
-
- output_dir = os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR)
- pipeline_sentence_similarity(output_dir)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_trainer_with_backbone_head(self):
- model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
- kwargs = dict(
- model=model_id,
- train_dataset=self.dataset,
- eval_dataset=self.dataset,
- work_dir=self.tmp_dir,
- model_revision='beta')
-
- trainer = build_trainer(default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(10):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- eval_results = trainer.evaluate(
- checkpoint_path=os.path.join(self.tmp_dir, 'epoch_10.pth'))
- self.assertTrue(Metrics.accuracy in eval_results)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_trainer_with_user_defined_config(self):
- model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
- cfg = read_config(model_id, revision='beta')
- cfg.train.max_epochs = 20
- cfg.train.work_dir = self.tmp_dir
- cfg_file = os.path.join(self.tmp_dir, 'config.json')
- cfg.dump(cfg_file)
- kwargs = dict(
- model=model_id,
- train_dataset=self.dataset,
- eval_dataset=self.dataset,
- cfg_file=cfg_file,
- model_revision='beta')
-
- trainer = build_trainer(default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(20):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- eval_results = trainer.evaluate(
- checkpoint_path=os.path.join(self.tmp_dir, 'epoch_10.pth'))
- self.assertTrue(Metrics.accuracy in eval_results)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_trainer_with_model_and_args(self):
- tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(tmp_dir):
- os.makedirs(tmp_dir)
-
- model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
- cache_path = snapshot_download(model_id, revision='beta')
- model = SbertForSequenceClassification.from_pretrained(cache_path)
- kwargs = dict(
- cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
- model=model,
- train_dataset=self.dataset,
- eval_dataset=self.dataset,
- max_epochs=2,
- work_dir=self.tmp_dir)
-
- trainer = build_trainer(default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(2):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
-
- if __name__ == '__main__':
- unittest.main()
|