|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
-
- import json
- import numpy as np
- import torch
- from torch import nn
- from torch.optim import SGD
- from torch.optim.lr_scheduler import StepLR
- from torch.utils.data import IterableDataset
-
- from modelscope.metainfo import Metrics, Trainers
- from modelscope.metrics.builder import MetricKeys
- from modelscope.models.base import Model
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import LogKeys, ModeKeys, ModelFile
- from modelscope.utils.test_utils import create_dummy_test_dataset, test_level
-
-
- class DummyIterableDataset(IterableDataset):
-
- def __iter__(self):
- feat = np.random.random(size=(5, )).astype(np.float32)
- labels = np.random.randint(0, 4, (1, ))
- iterations = [{'feat': feat, 'labels': labels}] * 500
- return iter(iterations)
-
-
- dummy_dataset_small = create_dummy_test_dataset(
- np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
-
- dummy_dataset_big = create_dummy_test_dataset(
- np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 40)
-
-
- class DummyModel(nn.Module, Model):
-
- def __init__(self):
- super().__init__()
- self.linear = nn.Linear(5, 4)
- self.bn = nn.BatchNorm1d(4)
-
- def forward(self, feat, labels):
- x = self.linear(feat)
-
- x = self.bn(x)
- loss = torch.sum(x)
- return dict(logits=x, loss=loss)
-
-
- class TrainerTest(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_train_0(self):
- json_cfg = {
- 'train': {
- 'work_dir':
- self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- },
- 'optimizer': {
- 'type': 'SGD',
- 'lr': 0.01,
- 'options': {
- 'grad_clip': {
- 'max_norm': 2.0
- }
- }
- },
- 'lr_scheduler': {
- 'type': 'StepLR',
- 'step_size': 2,
- 'options': {
- 'warmup': {
- 'type': 'LinearWarmup',
- 'warmup_iters': 2
- }
- }
- },
- 'hooks': [{
- 'type': 'CheckpointHook',
- 'interval': 1
- }, {
- 'type': 'TextLoggerHook',
- 'interval': 1
- }, {
- 'type': 'IterTimerHook'
- }, {
- 'type': 'EvaluationHook',
- 'interval': 1
- }]
- },
- 'evaluation': {
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1,
- 'shuffle': False
- },
- 'metrics': [Metrics.seq_cls_metric]
- }
- }
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- trainer_name = Trainers.default
- kwargs = dict(
- cfg_file=config_path,
- model=DummyModel(),
- data_collator=None,
- train_dataset=dummy_dataset_small,
- eval_dataset=dummy_dataset_small,
- max_epochs=3,
- device='cpu')
-
- trainer = build_trainer(trainer_name, kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
-
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_train_1(self):
- json_cfg = {
- 'train': {
- 'work_dir':
- self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- },
- 'hooks': [{
- 'type': 'CheckpointHook',
- 'interval': 1
- }, {
- 'type': 'TextLoggerHook',
- 'interval': 1
- }, {
- 'type': 'IterTimerHook'
- }, {
- 'type': 'EvaluationHook',
- 'interval': 1
- }]
- },
- 'evaluation': {
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1,
- 'shuffle': False
- },
- 'metrics': [Metrics.seq_cls_metric]
- }
- }
-
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- model = DummyModel()
- optimmizer = SGD(model.parameters(), lr=0.01)
- lr_scheduler = StepLR(optimmizer, 2)
- trainer_name = Trainers.default
- kwargs = dict(
- cfg_file=config_path,
- model=model,
- data_collator=None,
- train_dataset=dummy_dataset_small,
- eval_dataset=dummy_dataset_small,
- optimizers=(optimmizer, lr_scheduler),
- max_epochs=3,
- device='cpu')
-
- trainer = build_trainer(trainer_name, kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
-
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_train_with_default_config(self):
- json_cfg = {
- 'train': {
- 'work_dir': self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- },
- 'hooks': [{
- 'type': 'EvaluationHook',
- 'interval': 1
- }]
- },
- 'evaluation': {
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1,
- 'shuffle': False
- },
- 'metrics': [Metrics.seq_cls_metric]
- }
- }
-
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- model = DummyModel()
- optimmizer = SGD(model.parameters(), lr=0.01)
- lr_scheduler = StepLR(optimmizer, 2)
- trainer_name = Trainers.default
- kwargs = dict(
- cfg_file=config_path,
- model=model,
- data_collator=None,
- train_dataset=dummy_dataset_big,
- eval_dataset=dummy_dataset_small,
- optimizers=(optimmizer, lr_scheduler),
- max_epochs=3,
- device='cpu')
-
- trainer = build_trainer(trainer_name, kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
-
- json_file = os.path.join(self.tmp_dir, f'{trainer.timestamp}.log.json')
- with open(json_file, 'r') as f:
- lines = [i.strip() for i in f.readlines()]
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 1,
- LogKeys.ITER: 10,
- LogKeys.LR: 0.01
- }, json.loads(lines[0]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 1,
- LogKeys.ITER: 20,
- LogKeys.LR: 0.01
- }, json.loads(lines[1]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.EVAL,
- LogKeys.EPOCH: 1,
- LogKeys.ITER: 20
- }, json.loads(lines[2]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 2,
- LogKeys.ITER: 10,
- LogKeys.LR: 0.01
- }, json.loads(lines[3]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 2,
- LogKeys.ITER: 20,
- LogKeys.LR: 0.01
- }, json.loads(lines[4]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.EVAL,
- LogKeys.EPOCH: 2,
- LogKeys.ITER: 20
- }, json.loads(lines[5]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 3,
- LogKeys.ITER: 10,
- LogKeys.LR: 0.001
- }, json.loads(lines[6]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 3,
- LogKeys.ITER: 20,
- LogKeys.LR: 0.001
- }, json.loads(lines[7]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.EVAL,
- LogKeys.EPOCH: 3,
- LogKeys.ITER: 20
- }, json.loads(lines[8]))
- self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
- for i in [0, 1, 3, 4, 6, 7]:
- self.assertIn(LogKeys.DATA_LOAD_TIME, lines[i])
- self.assertIn(LogKeys.ITER_TIME, lines[i])
- for i in [2, 5, 8]:
- self.assertIn(MetricKeys.ACCURACY, lines[i])
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_train_with_iters_per_epoch(self):
- json_cfg = {
- 'train': {
- 'work_dir': self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- },
- 'hooks': [{
- 'type': 'EvaluationHook',
- 'interval': 1
- }]
- },
- 'evaluation': {
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1,
- 'shuffle': False
- },
- 'metrics': [Metrics.seq_cls_metric]
- }
- }
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- model = DummyModel()
- optimmizer = SGD(model.parameters(), lr=0.01)
- lr_scheduler = StepLR(optimmizer, 2)
- trainer_name = Trainers.default
- kwargs = dict(
- cfg_file=config_path,
- model=model,
- data_collator=None,
- optimizers=(optimmizer, lr_scheduler),
- train_dataset=DummyIterableDataset(),
- eval_dataset=DummyIterableDataset(),
- train_iters_per_epoch=20,
- val_iters_per_epoch=10,
- max_epochs=3,
- device='cpu')
-
- trainer = build_trainer(trainer_name, kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- json_file = os.path.join(self.tmp_dir, f'{trainer.timestamp}.log.json')
- with open(json_file, 'r') as f:
- lines = [i.strip() for i in f.readlines()]
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 1,
- LogKeys.ITER: 10,
- LogKeys.LR: 0.01
- }, json.loads(lines[0]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 1,
- LogKeys.ITER: 20,
- LogKeys.LR: 0.01
- }, json.loads(lines[1]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.EVAL,
- LogKeys.EPOCH: 1,
- LogKeys.ITER: 10
- }, json.loads(lines[2]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 2,
- LogKeys.ITER: 10,
- LogKeys.LR: 0.01
- }, json.loads(lines[3]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 2,
- LogKeys.ITER: 20,
- LogKeys.LR: 0.01
- }, json.loads(lines[4]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.EVAL,
- LogKeys.EPOCH: 2,
- LogKeys.ITER: 10
- }, json.loads(lines[5]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 3,
- LogKeys.ITER: 10,
- LogKeys.LR: 0.001
- }, json.loads(lines[6]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 3,
- LogKeys.ITER: 20,
- LogKeys.LR: 0.001
- }, json.loads(lines[7]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.EVAL,
- LogKeys.EPOCH: 3,
- LogKeys.ITER: 10
- }, json.loads(lines[8]))
- self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
- for i in [0, 1, 3, 4, 6, 7]:
- self.assertIn(LogKeys.DATA_LOAD_TIME, lines[i])
- self.assertIn(LogKeys.ITER_TIME, lines[i])
- for i in [2, 5, 8]:
- self.assertIn(MetricKeys.ACCURACY, lines[i])
-
-
- class DummyTrainerTest(unittest.TestCase):
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_dummy(self):
- default_args = dict(cfg_file='configs/examples/train.json')
- trainer = build_trainer('dummy', default_args)
-
- trainer.train()
- trainer.evaluate()
-
-
- if __name__ == '__main__':
- unittest.main()
|