|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.metainfo import Trainers
- from modelscope.models.nlp.palm_v2 import PalmForTextGeneration
- from modelscope.msdatasets import MsDataset
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import ModelFile
- from modelscope.utils.test_utils import test_level
-
-
- class TestTextGenerationTrainer(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- self.model_id = 'damo/nlp_palm2.0_text-generation_english-base'
-
- # todo: Replace below scripts with MsDataset.load when the formal dataset service is ready
- from datasets import Dataset
- dataset_dict = {
- 'src_txt': [
- 'This is test sentence1-1', 'This is test sentence2-1',
- 'This is test sentence3-1'
- ],
- 'tgt_txt': [
- 'This is test sentence1-2', 'This is test sentence2-2',
- 'This is test sentence3-2'
- ]
- }
- dataset = Dataset.from_dict(dataset_dict)
-
- class MsDatasetDummy(MsDataset):
-
- def __len__(self):
- return len(self._hf_ds)
-
- self.dataset = MsDatasetDummy(dataset)
-
- def tearDown(self):
- shutil.rmtree(self.tmp_dir)
- super().tearDown()
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_trainer(self):
-
- kwargs = dict(
- model=self.model_id,
- train_dataset=self.dataset,
- eval_dataset=self.dataset,
- work_dir=self.tmp_dir)
-
- trainer = build_trainer(
- name=Trainers.nlp_base_trainer, default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(3):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_trainer_with_model_and_args(self):
- tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(tmp_dir):
- os.makedirs(tmp_dir)
-
- cache_path = snapshot_download(self.model_id)
- model = PalmForTextGeneration.from_pretrained(cache_path)
- kwargs = dict(
- cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
- model=model,
- train_dataset=self.dataset,
- eval_dataset=self.dataset,
- max_epochs=2,
- work_dir=self.tmp_dir)
-
- trainer = build_trainer(default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(2):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- @unittest.skip
- def test_finetune_cnndm(self):
- from datasets import load_dataset
- dataset_dict = load_dataset('ccdv/cnn_dailymail', '3.0.0')
- train_dataset = dataset_dict['train'] \
- .rename_columns({'article': 'src_txt', 'highlights': 'tgt_txt'}) \
- .remove_columns('id')
- eval_dataset = dataset_dict['validation'] \
- .rename_columns({'article': 'src_txt', 'highlights': 'tgt_txt'}) \
- .remove_columns('id')
- num_warmup_steps = 2000
-
- def noam_lambda(current_step: int):
- current_step += 1
- return min(current_step**(-0.5),
- current_step * num_warmup_steps**(-1.5))
-
- def cfg_modify_fn(cfg):
- cfg.train.lr_scheduler = {
- 'type': 'LambdaLR',
- 'lr_lambda': noam_lambda,
- 'options': {
- 'by_epoch': False
- }
- }
- return cfg
-
- kwargs = dict(
- model=self.model_id,
- train_dataset=train_dataset,
- eval_dataset=eval_dataset,
- work_dir=self.tmp_dir,
- cfg_modify_fn=cfg_modify_fn,
- model_revision='beta')
- trainer = build_trainer(
- name=Trainers.nlp_base_trainer, default_args=kwargs)
- trainer.train()
-
-
- if __name__ == '__main__':
- unittest.main()
|