|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import glob
- import os
- import shutil
- import tempfile
- import unittest
-
- import requests
- import torch
-
- from modelscope.metainfo import Trainers
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import LogKeys, Tasks
- from modelscope.utils.logger import get_logger
- from modelscope.utils.test_utils import test_level
- from modelscope.utils.torch_utils import is_master
-
-
- def _download_data(url, save_dir):
- r = requests.get(url, verify=True)
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- zip_name = os.path.split(url)[-1]
- save_path = os.path.join(save_dir, zip_name)
- with open(save_path, 'wb') as f:
- f.write(r.content)
-
- unpack_dir = os.path.join(save_dir, os.path.splitext(zip_name)[0])
- shutil.unpack_archive(save_path, unpack_dir)
-
-
- @unittest.skipIf(not torch.cuda.is_available(), 'cuda unittest')
- class EasyCVTrainerTestSegformer(unittest.TestCase):
-
- def setUp(self):
- self.logger = get_logger()
- self.logger.info(('Testing %s.%s' %
- (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir, ignore_errors=True)
-
- def _train(self):
- from modelscope.trainers.easycv.trainer import EasyCVEpochBasedTrainer
-
- url = 'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/small_coco_stuff164k.zip'
- data_dir = os.path.join(self.tmp_dir, 'data')
- if is_master():
- _download_data(url, data_dir)
-
- # adapt to ditributed mode
- from easycv.utils.test_util import pseudo_dist_init
- pseudo_dist_init()
-
- root_path = os.path.join(data_dir, 'small_coco_stuff164k')
- cfg_options = {
- 'train.max_epochs':
- 2,
- 'dataset.train.data_source.img_root':
- os.path.join(root_path, 'train2017'),
- 'dataset.train.data_source.label_root':
- os.path.join(root_path, 'annotations/train2017'),
- 'dataset.train.data_source.split':
- os.path.join(root_path, 'train.txt'),
- 'dataset.val.data_source.img_root':
- os.path.join(root_path, 'val2017'),
- 'dataset.val.data_source.label_root':
- os.path.join(root_path, 'annotations/val2017'),
- 'dataset.val.data_source.split':
- os.path.join(root_path, 'val.txt'),
- }
-
- trainer_name = Trainers.easycv
- kwargs = dict(
- task=Tasks.image_segmentation,
- model='EasyCV/EasyCV-Segformer-b0',
- work_dir=self.tmp_dir,
- cfg_options=cfg_options)
-
- trainer = build_trainer(trainer_name, kwargs)
- trainer.train()
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_single_gpu_segformer(self):
- self._train()
-
- results_files = os.listdir(self.tmp_dir)
- json_files = glob.glob(os.path.join(self.tmp_dir, '*.log.json'))
- self.assertEqual(len(json_files), 1)
- self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
-
-
- if __name__ == '__main__':
- unittest.main()
|