|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.models import NAFNetForImageDenoise
- from modelscope.msdatasets.image_denoise_data.image_denoise_dataset import \
- PairedImageDataset
- from modelscope.trainers import build_trainer
- from modelscope.utils.config import Config
- from modelscope.utils.constant import ModelFile
- from modelscope.utils.logger import get_logger
- from modelscope.utils.test_utils import test_level
-
- logger = get_logger()
-
-
- class ImageDenoiseTrainerTest(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- self.model_id = 'damo/cv_nafnet_image-denoise_sidd'
- self.cache_path = snapshot_download(self.model_id)
- self.config = Config.from_file(
- os.path.join(self.cache_path, ModelFile.CONFIGURATION))
- self.dataset_train = PairedImageDataset(
- self.config.dataset, self.cache_path, is_train=True)
- self.dataset_val = PairedImageDataset(
- self.config.dataset, self.cache_path, is_train=False)
-
- def tearDown(self):
- shutil.rmtree(self.tmp_dir, ignore_errors=True)
- super().tearDown()
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_trainer(self):
- kwargs = dict(
- model=self.model_id,
- train_dataset=self.dataset_train,
- eval_dataset=self.dataset_val,
- work_dir=self.tmp_dir)
- trainer = build_trainer(default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(2):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_trainer_with_model_and_args(self):
- model = NAFNetForImageDenoise.from_pretrained(self.cache_path)
- kwargs = dict(
- cfg_file=os.path.join(self.cache_path, ModelFile.CONFIGURATION),
- model=model,
- train_dataset=self.dataset_train,
- eval_dataset=self.dataset_val,
- max_epochs=2,
- work_dir=self.tmp_dir)
- trainer = build_trainer(default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(2):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
-
- if __name__ == '__main__':
- unittest.main()
|