|
- # Copyright (c) Alibaba, Inc. and its affiliates.
-
- import time
- from collections.abc import Sequence
-
- from .builder import PREPROCESSORS, build_preprocessor
-
-
- @PREPROCESSORS.register_module()
- class Compose(object):
- """Compose a data pipeline with a sequence of transforms.
- Args:
- transforms (list[dict | callable]):
- Either config dicts of transforms or transform objects.
- profiling (bool, optional): If set True, will profile and
- print preprocess time for each step.
- """
-
- def __init__(self, transforms, field_name=None, profiling=False):
- assert isinstance(transforms, Sequence)
- self.profiling = profiling
- self.transforms = []
- self.field_name = field_name
- for transform in transforms:
- if isinstance(transform, dict):
- if self.field_name is None:
- transform = build_preprocessor(transform, field_name)
- self.transforms.append(transform)
- elif callable(transform):
- self.transforms.append(transform)
- else:
- raise TypeError('transform must be callable or a dict, but got'
- f' {type(transform)}')
-
- def __call__(self, data):
- for t in self.transforms:
- if self.profiling:
- start = time.time()
-
- data = t(data)
-
- if self.profiling:
- print(f'{t} time {time.time()-start}')
-
- if data is None:
- return None
- return data
-
- def __repr__(self):
- format_string = self.__class__.__name__ + '('
- for t in self.transforms:
- format_string += f'\n {t}'
- format_string += '\n)'
- return format_string
|