|
- import os.path as osp
- from typing import Any, Dict
-
- import cv2
- import numpy as np
- import PIL
-
- from modelscope.pipelines.base import Input
- from modelscope.preprocessors import load_image
- from modelscope.utils.constant import ModelFile, Tasks
- from modelscope.utils.logger import get_logger
- from ..base import Pipeline
- from ..builder import PIPELINES
-
- logger = get_logger()
-
-
- @PIPELINES.register_module(
- Tasks.image_matting, module_name=Tasks.image_matting)
- class ImageMattingPipeline(Pipeline):
-
- def __init__(self, model: str):
- super().__init__(model=model)
- import tensorflow as tf
- if tf.__version__ >= '2.0':
- tf = tf.compat.v1
- model_path = osp.join(self.model, ModelFile.TF_GRAPH_FILE)
-
- config = tf.ConfigProto(allow_soft_placement=True)
- config.gpu_options.allow_growth = True
- self._session = tf.Session(config=config)
- with self._session.as_default():
- logger.info(f'loading model from {model_path}')
- with tf.gfile.FastGFile(model_path, 'rb') as f:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(f.read())
- tf.import_graph_def(graph_def, name='')
- self.output = self._session.graph.get_tensor_by_name(
- 'output_png:0')
- self.input_name = 'input_image:0'
- logger.info('load model done')
-
- def preprocess(self, input: Input) -> Dict[str, Any]:
- if isinstance(input, str):
- img = np.array(load_image(input))
- elif isinstance(input, PIL.Image.Image):
- img = np.array(input.convert('RGB'))
- elif isinstance(input, np.ndarray):
- if len(input.shape) == 2:
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
- img = input[:, :, ::-1] # in rgb order
- else:
- raise TypeError(f'input should be either str, PIL.Image,'
- f' np.array, but got {type(input)}')
- img = img.astype(np.float)
- result = {'img': img}
- return result
-
- def forward(self, input: Dict[str, Any]) -> Dict[str, Any]:
- with self._session.as_default():
- feed_dict = {self.input_name: input['img']}
- output_png = self._session.run(self.output, feed_dict=feed_dict)
- output_png = cv2.cvtColor(output_png, cv2.COLOR_RGBA2BGRA)
- return {'output_png': output_png}
-
- def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
- return inputs
|