|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import copy
- import math
- from typing import Any
-
- import cv2
- import numpy as np
-
- from modelscope.metainfo import Pipelines
- from modelscope.outputs import OutputKeys
- from modelscope.pipelines import pipeline
- from modelscope.pipelines.builder import PIPELINES
- from modelscope.preprocessors import LoadImage
- from modelscope.utils.constant import ModelFile, Tasks
- from modelscope.utils.logger import get_logger
- from .base import EasyCVPipeline
-
- logger = get_logger()
-
-
- @PIPELINES.register_module(
- Tasks.face_2d_keypoints, module_name=Pipelines.face_2d_keypoints)
- class Face2DKeypointsPipeline(EasyCVPipeline):
- """Pipeline for face 2d keypoints detection."""
-
- def __init__(self,
- model: str,
- model_file_pattern=ModelFile.TORCH_MODEL_FILE,
- *args,
- **kwargs):
- """
- model (str): model id on modelscope hub or local model path.
- model_file_pattern (str): model file pattern.
- """
-
- super(Face2DKeypointsPipeline, self).__init__(
- model=model,
- model_file_pattern=model_file_pattern,
- *args,
- **kwargs)
-
- # face detect pipeline
- det_model_id = 'damo/cv_resnet_facedetection_scrfd10gkps'
- self.face_detection = pipeline(
- Tasks.face_detection, model=det_model_id)
-
- def show_result(self, img, points, scale=2, save_path=None):
- return self.predict_op.show_result(img, points, scale, save_path)
-
- def _choose_face(self, det_result, min_face=10):
- """
- choose face with maximum area
- Args:
- det_result: output of face detection pipeline
- min_face: minimum size of valid face w/h
- """
- bboxes = np.array(det_result[OutputKeys.BOXES])
- landmarks = np.array(det_result[OutputKeys.KEYPOINTS])
- if bboxes.shape[0] == 0:
- logger.warn('No face detected!')
- return None
- # face idx with enough size
- face_idx = []
- for i in range(bboxes.shape[0]):
- box = bboxes[i]
- if (box[2] - box[0]) >= min_face and (box[3] - box[1]) >= min_face:
- face_idx += [i]
- if len(face_idx) == 0:
- logger.warn(
- f'Face size not enough, less than {min_face}x{min_face}!')
- return None
- bboxes = bboxes[face_idx]
- landmarks = landmarks[face_idx]
-
- return bboxes, landmarks
-
- def expend_box(self, box, w, h, scalex=0.3, scaley=0.5):
- x1 = box[0]
- y1 = box[1]
- wb = box[2] - x1
- hb = box[3] - y1
- deltax = int(wb * scalex)
- deltay1 = int(hb * scaley)
- deltay2 = int(hb * scalex)
- x1 = x1 - deltax
- y1 = y1 - deltay1
- if x1 < 0:
- deltax = deltax + x1
- x1 = 0
- if y1 < 0:
- deltay1 = deltay1 + y1
- y1 = 0
- x2 = x1 + wb + 2 * deltax
- y2 = y1 + hb + deltay1 + deltay2
- x2 = np.clip(x2, 0, w - 1)
- y2 = np.clip(y2, 0, h - 1)
- return [x1, y1, x2, y2]
-
- def rotate_point(self, angle, center, landmark):
- rad = angle * np.pi / 180.0
- alpha = np.cos(rad)
- beta = np.sin(rad)
- M = np.zeros((2, 3), dtype=np.float32)
- M[0, 0] = alpha
- M[0, 1] = beta
- M[0, 2] = (1 - alpha) * center[0] - beta * center[1]
- M[1, 0] = -beta
- M[1, 1] = alpha
- M[1, 2] = beta * center[0] + (1 - alpha) * center[1]
-
- landmark_ = np.asarray([(M[0, 0] * x + M[0, 1] * y + M[0, 2],
- M[1, 0] * x + M[1, 1] * y + M[1, 2])
- for (x, y) in landmark])
- return M, landmark_
-
- def rotate_crop_img(self, img, pts, M):
- imgT = cv2.warpAffine(img, M, (int(img.shape[1]), int(img.shape[0])))
-
- x1 = pts[5][0]
- x2 = pts[5][0]
- y1 = pts[5][1]
- y2 = pts[5][1]
- for i in range(0, 9):
- x1 = min(x1, pts[i][0])
- x2 = max(x2, pts[i][0])
- y1 = min(y1, pts[i][1])
- y2 = max(y2, pts[i][1])
-
- height, width, _ = imgT.shape
- x1 = min(max(0, int(x1)), width)
- y1 = min(max(0, int(y1)), height)
- x2 = min(max(0, int(x2)), width)
- y2 = min(max(0, int(y2)), height)
- sub_imgT = imgT[y1:y2, x1:x2]
-
- return sub_imgT, imgT, [x1, y1, x2, y2]
-
- def crop_img(self, imgT, pts):
- enlarge_ratio = 1.1
-
- x1 = np.min(pts[:, 0])
- x2 = np.max(pts[:, 0])
- y1 = np.min(pts[:, 1])
- y2 = np.max(pts[:, 1])
- w = x2 - x1 + 1
- h = y2 - y1 + 1
- x1 = int(x1 - (enlarge_ratio - 1.0) / 2.0 * w)
- y1 = int(y1 - (enlarge_ratio - 1.0) / 2.0 * h)
- x1 = max(0, x1)
- y1 = max(0, y1)
-
- new_w = int(enlarge_ratio * w)
- new_h = int(enlarge_ratio * h)
- new_x1 = x1
- new_y1 = y1
- new_x2 = new_x1 + new_w
- new_y2 = new_y1 + new_h
-
- height, width, _ = imgT.shape
-
- new_x1 = min(max(0, new_x1), width)
- new_y1 = min(max(0, new_y1), height)
- new_x2 = max(min(width, new_x2), 0)
- new_y2 = max(min(height, new_y2), 0)
-
- sub_imgT = imgT[new_y1:new_y2, new_x1:new_x2]
-
- return sub_imgT, [new_x1, new_y1, new_x2, new_y2]
-
- def __call__(self, inputs) -> Any:
- img = LoadImage.convert_to_ndarray(inputs)
- h, w, c = img.shape
- img_rgb = copy.deepcopy(img)
- img_rgb = img_rgb[:, :, ::-1]
- det_result = self.face_detection(img_rgb)
-
- bboxes = np.array(det_result[OutputKeys.BOXES])
- if bboxes.shape[0] == 0:
- logger.warn('No face detected!')
- results = {
- OutputKeys.KEYPOINTS: [],
- OutputKeys.POSES: [],
- OutputKeys.BOXES: []
- }
- return results
-
- boxes, keypoints = self._choose_face(det_result)
-
- output_boxes = []
- output_keypoints = []
- output_poses = []
- for index, box_ori in enumerate(boxes):
- box = self.expend_box(box_ori, w, h, scalex=0.1, scaley=0.1)
- y0 = int(box[1])
- y1 = int(box[3])
- x0 = int(box[0])
- x1 = int(box[2])
- sub_img = img[y0:y1, x0:x1]
-
- keypoint = keypoints[index]
- pts = [[keypoint[0], keypoint[1]], [keypoint[2], keypoint[3]],
- [keypoint[4], keypoint[5]], [keypoint[6], keypoint[7]],
- [keypoint[8], keypoint[9]], [box[0], box[1]],
- [box[2], box[1]], [box[0], box[3]], [box[2], box[3]]]
- # radian
- angle = math.atan2((pts[1][1] - pts[0][1]),
- (pts[1][0] - pts[0][0]))
- # angle
- theta = angle * (180 / np.pi)
-
- center = [w // 2, h // 2]
- cx, cy = center
- M, landmark_ = self.rotate_point(theta, (cx, cy), pts)
- sub_imgT, imgT, bbox = self.rotate_crop_img(img, landmark_, M)
-
- outputs = self.predict_op([sub_imgT])[0]
- tmp_keypoints = outputs['point']
-
- for idx in range(0, len(tmp_keypoints)):
- tmp_keypoints[idx][0] += bbox[0]
- tmp_keypoints[idx][1] += bbox[1]
-
- for idx in range(0, 6):
- sub_img, bbox = self.crop_img(imgT, tmp_keypoints)
- outputs = self.predict_op([sub_img])[0]
- tmp_keypoints = outputs['point']
- for idx in range(0, len(tmp_keypoints)):
- tmp_keypoints[idx][0] += bbox[0]
- tmp_keypoints[idx][1] += bbox[1]
-
- M2, tmp_keypoints = self.rotate_point(-theta, (cx, cy),
- tmp_keypoints)
-
- output_keypoints.append(np.array(tmp_keypoints))
- output_poses.append(np.array(outputs['pose']))
- output_boxes.append(np.array(box_ori))
-
- results = {
- OutputKeys.KEYPOINTS: output_keypoints,
- OutputKeys.POSES: output_poses,
- OutputKeys.BOXES: output_boxes
- }
-
- return results
|