|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
- import zipfile
- from functools import partial
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.metainfo import Trainers
- from modelscope.models.cv.image_instance_segmentation import \
- CascadeMaskRCNNSwinModel
- from modelscope.msdatasets import MsDataset
- from modelscope.msdatasets.task_datasets import \
- ImageInstanceSegmentationCocoDataset
- from modelscope.trainers import build_trainer
- from modelscope.utils.config import Config, ConfigDict
- from modelscope.utils.constant import ModelFile
- from modelscope.utils.test_utils import test_level
-
-
- class TestImageInstanceSegmentationTrainer(unittest.TestCase):
-
- model_id = 'damo/cv_swin-b_image-instance-segmentation_coco'
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
-
- cache_path = snapshot_download(self.model_id)
- config_path = os.path.join(cache_path, ModelFile.CONFIGURATION)
- cfg = Config.from_file(config_path)
-
- max_epochs = cfg.train.max_epochs
- samples_per_gpu = cfg.train.dataloader.batch_size_per_gpu
- try:
- train_data_cfg = cfg.dataset.train
- val_data_cfg = cfg.dataset.val
- except Exception:
- train_data_cfg = None
- val_data_cfg = None
- if train_data_cfg is None:
- # use default toy data
- train_data_cfg = ConfigDict(
- name='pets_small',
- split='train',
- classes=('Cat', 'Dog'),
- test_mode=False)
- if val_data_cfg is None:
- val_data_cfg = ConfigDict(
- name='pets_small',
- split='validation',
- classes=('Cat', 'Dog'),
- test_mode=True)
-
- self.train_dataset = MsDataset.load(
- dataset_name=train_data_cfg.name,
- split=train_data_cfg.split,
- classes=train_data_cfg.classes,
- test_mode=train_data_cfg.test_mode)
- assert self.train_dataset.config_kwargs[
- 'classes'] == train_data_cfg.classes
- assert next(
- iter(self.train_dataset.config_kwargs['split_config'].values()))
-
- self.eval_dataset = MsDataset.load(
- dataset_name=val_data_cfg.name,
- split=val_data_cfg.split,
- classes=val_data_cfg.classes,
- test_mode=val_data_cfg.test_mode)
- assert self.eval_dataset.config_kwargs[
- 'classes'] == val_data_cfg.classes
- assert next(
- iter(self.eval_dataset.config_kwargs['split_config'].values()))
-
- from mmcv.parallel import collate
-
- self.collate_fn = partial(collate, samples_per_gpu=samples_per_gpu)
-
- self.max_epochs = max_epochs
-
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- def tearDown(self):
- shutil.rmtree(self.tmp_dir)
- super().tearDown()
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_trainer(self):
- kwargs = dict(
- model=self.model_id,
- data_collator=self.collate_fn,
- train_dataset=self.train_dataset,
- eval_dataset=self.eval_dataset,
- work_dir=self.tmp_dir)
-
- trainer = build_trainer(
- name=Trainers.image_instance_segmentation, default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(self.max_epochs):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_trainer_with_model_and_args(self):
- tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(tmp_dir):
- os.makedirs(tmp_dir)
-
- cache_path = snapshot_download(self.model_id)
- model = CascadeMaskRCNNSwinModel.from_pretrained(cache_path)
- kwargs = dict(
- cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
- model=model,
- data_collator=self.collate_fn,
- train_dataset=self.train_dataset,
- eval_dataset=self.eval_dataset,
- work_dir=self.tmp_dir)
-
- trainer = build_trainer(
- name=Trainers.image_instance_segmentation, default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(self.max_epochs):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
-
- if __name__ == '__main__':
- unittest.main()
|