|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
-
- import json
- import numpy as np
- import torch
- from torch import nn
-
- from modelscope.metrics.builder import METRICS, MetricKeys
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import LogKeys, ModelFile
- from modelscope.utils.registry import default_group
- from modelscope.utils.test_utils import create_dummy_test_dataset
-
-
- def create_dummy_metric():
- _global_iter = 0
-
- @METRICS.register_module(
- group_key=default_group, module_name='DummyMetric', force=True)
- class DummyMetric:
-
- _fake_acc_by_epoch = {1: 0.1, 2: 0.5, 3: 0.2}
-
- def add(*args, **kwargs):
- pass
-
- def evaluate(self):
- global _global_iter
- _global_iter += 1
- return {MetricKeys.ACCURACY: self._fake_acc_by_epoch[_global_iter]}
-
-
- dummy_dataset = create_dummy_test_dataset(
- np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
-
-
- class DummyModel(nn.Module):
-
- def __init__(self):
- super().__init__()
- self.linear = nn.Linear(5, 4)
- self.bn = nn.BatchNorm1d(4)
-
- def forward(self, feat, labels):
- x = self.linear(feat)
-
- x = self.bn(x)
- loss = torch.sum(x)
- return dict(logits=x, loss=loss)
-
-
- class CheckpointHookTest(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
- create_dummy_metric()
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir)
-
- def test_checkpoint_hook(self):
- global _global_iter
- _global_iter = 0
-
- json_cfg = {
- 'task': 'image_classification',
- 'train': {
- 'work_dir': self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- },
- 'optimizer': {
- 'type': 'SGD',
- 'lr': 0.01,
- 'options': {
- 'grad_clip': {
- 'max_norm': 2.0
- }
- }
- },
- 'lr_scheduler': {
- 'type': 'StepLR',
- 'step_size': 2,
- 'options': {
- 'warmup': {
- 'type': 'LinearWarmup',
- 'warmup_iters': 2
- }
- }
- },
- 'hooks': [{
- 'type': 'CheckpointHook',
- 'interval': 1
- }]
- }
- }
-
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- trainer_name = 'EpochBasedTrainer'
- kwargs = dict(
- cfg_file=config_path,
- model=DummyModel(),
- data_collator=None,
- train_dataset=dummy_dataset,
- max_epochs=2)
-
- trainer = build_trainer(trainer_name, kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
-
-
- class BestCkptSaverHookTest(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
- create_dummy_metric()
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir)
-
- def test_best_checkpoint_hook(self):
- global _global_iter
- _global_iter = 0
-
- json_cfg = {
- 'task': 'image_classification',
- 'train': {
- 'work_dir':
- self.tmp_dir,
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1
- },
- 'optimizer': {
- 'type': 'SGD',
- 'lr': 0.01
- },
- 'lr_scheduler': {
- 'type': 'StepLR',
- 'step_size': 2
- },
- 'hooks': [{
- 'type': 'BestCkptSaverHook',
- 'metric_key': MetricKeys.ACCURACY,
- 'rule': 'min'
- }, {
- 'type': 'EvaluationHook',
- 'interval': 1,
- }]
- },
- 'evaluation': {
- 'dataloader': {
- 'batch_size_per_gpu': 2,
- 'workers_per_gpu': 1,
- 'shuffle': False
- },
- 'metrics': ['DummyMetric']
- }
- }
- config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
- with open(config_path, 'w') as f:
- json.dump(json_cfg, f)
-
- trainer_name = 'EpochBasedTrainer'
- kwargs = dict(
- cfg_file=config_path,
- model=DummyModel(),
- data_collator=None,
- train_dataset=dummy_dataset,
- eval_dataset=dummy_dataset,
- max_epochs=3)
-
- trainer = build_trainer(trainer_name, kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
- self.assertIn(f'best_{LogKeys.EPOCH}1_{MetricKeys.ACCURACY}0.1.pth',
- results_files)
-
-
- if __name__ == '__main__':
- unittest.main()
|