|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import glob
- import os
- import shutil
- import tempfile
- import unittest
-
- import json
- import torch
-
- from modelscope.metainfo import Models, Pipelines, Trainers
- from modelscope.msdatasets import MsDataset
- from modelscope.trainers import build_trainer
- from modelscope.utils.config import Config
- from modelscope.utils.constant import LogKeys, ModeKeys, Tasks
- from modelscope.utils.logger import get_logger
- from modelscope.utils.test_utils import DistributedTestCase, test_level
- from modelscope.utils.torch_utils import is_master
-
-
- def train_func(work_dir, dist=False, log_interval=3, imgs_per_gpu=4):
- import easycv
- config_path = os.path.join(
- os.path.dirname(easycv.__file__),
- 'configs/detection/yolox/yolox_s_8xb16_300e_coco.py')
-
- cfg = Config.from_file(config_path)
-
- cfg.log_config.update(
- dict(hooks=[
- dict(type='TextLoggerHook'),
- dict(type='TensorboardLoggerHook')
- ])) # not support TensorboardLoggerHookV2
-
- ms_cfg_file = os.path.join(work_dir, 'ms_yolox_s_8xb16_300e_coco.json')
- from easycv.utils.ms_utils import to_ms_config
-
- if is_master():
- to_ms_config(
- cfg,
- dump=True,
- task=Tasks.image_object_detection,
- ms_model_name=Models.yolox,
- pipeline_name=Pipelines.easycv_detection,
- save_path=ms_cfg_file)
-
- trainer_name = Trainers.easycv
- train_dataset = MsDataset.load(
- dataset_name='small_coco_for_test', namespace='EasyCV', split='train')
- eval_dataset = MsDataset.load(
- dataset_name='small_coco_for_test',
- namespace='EasyCV',
- split='validation')
-
- cfg_options = {
- 'train.max_epochs':
- 2,
- 'train.dataloader.batch_size_per_gpu':
- imgs_per_gpu,
- 'evaluation.dataloader.batch_size_per_gpu':
- 2,
- 'train.hooks': [
- {
- 'type': 'CheckpointHook',
- 'interval': 1
- },
- {
- 'type': 'EvaluationHook',
- 'interval': 1
- },
- {
- 'type': 'TextLoggerHook',
- 'interval': log_interval
- },
- ]
- }
- kwargs = dict(
- cfg_file=ms_cfg_file,
- train_dataset=train_dataset,
- eval_dataset=eval_dataset,
- work_dir=work_dir,
- cfg_options=cfg_options,
- launcher='pytorch' if dist else None)
-
- trainer = build_trainer(trainer_name, kwargs)
- trainer.train()
-
-
- @unittest.skipIf(not torch.cuda.is_available(), 'cuda unittest')
- class EasyCVTrainerTestSingleGpu(unittest.TestCase):
-
- def setUp(self):
- self.logger = get_logger()
- self.logger.info(('Testing %s.%s' %
- (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir, ignore_errors=True)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_single_gpu(self):
- train_func(self.tmp_dir)
-
- results_files = os.listdir(self.tmp_dir)
- json_files = glob.glob(os.path.join(self.tmp_dir, '*.log.json'))
- self.assertEqual(len(json_files), 1)
-
- with open(json_files[0], 'r', encoding='utf-8') as f:
- lines = [i.strip() for i in f.readlines()]
-
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 1,
- LogKeys.ITER: 3,
- LogKeys.LR: 0.00013
- }, json.loads(lines[0]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.EVAL,
- LogKeys.EPOCH: 1,
- LogKeys.ITER: 10
- }, json.loads(lines[1]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 2,
- LogKeys.ITER: 3,
- LogKeys.LR: 0.00157
- }, json.loads(lines[2]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.EVAL,
- LogKeys.EPOCH: 2,
- LogKeys.ITER: 10
- }, json.loads(lines[3]))
- self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
- for i in [0, 2]:
- self.assertIn(LogKeys.DATA_LOAD_TIME, lines[i])
- self.assertIn(LogKeys.ITER_TIME, lines[i])
- self.assertIn(LogKeys.MEMORY, lines[i])
- self.assertIn('total_loss', lines[i])
- for i in [1, 3]:
- self.assertIn(
- 'CocoDetectionEvaluator_DetectionBoxes_Precision/mAP',
- lines[i])
- self.assertIn('DetectionBoxes_Precision/mAP', lines[i])
- self.assertIn('DetectionBoxes_Precision/mAP@.50IOU', lines[i])
- self.assertIn('DetectionBoxes_Precision/mAP@.75IOU', lines[i])
- self.assertIn('DetectionBoxes_Precision/mAP (small)', lines[i])
-
-
- @unittest.skipIf(not torch.cuda.is_available()
- or torch.cuda.device_count() <= 1, 'distributed unittest')
- class EasyCVTrainerTestMultiGpus(DistributedTestCase):
-
- def setUp(self):
- self.logger = get_logger()
- self.logger.info(('Testing %s.%s' %
- (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- def tearDown(self):
- super().tearDown()
- shutil.rmtree(self.tmp_dir, ignore_errors=True)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_multi_gpus(self):
- self.start(
- train_func,
- num_gpus=2,
- work_dir=self.tmp_dir,
- dist=True,
- log_interval=2,
- imgs_per_gpu=5)
-
- results_files = os.listdir(self.tmp_dir)
- json_files = glob.glob(os.path.join(self.tmp_dir, '*.log.json'))
- self.assertEqual(len(json_files), 1)
-
- with open(json_files[0], 'r', encoding='utf-8') as f:
- lines = [i.strip() for i in f.readlines()]
-
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 1,
- LogKeys.ITER: 2,
- LogKeys.LR: 0.0002
- }, json.loads(lines[0]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.EVAL,
- LogKeys.EPOCH: 1,
- LogKeys.ITER: 5
- }, json.loads(lines[1]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.TRAIN,
- LogKeys.EPOCH: 2,
- LogKeys.ITER: 2,
- LogKeys.LR: 0.0018
- }, json.loads(lines[2]))
- self.assertDictContainsSubset(
- {
- LogKeys.MODE: ModeKeys.EVAL,
- LogKeys.EPOCH: 2,
- LogKeys.ITER: 5
- }, json.loads(lines[3]))
-
- self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
- self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
-
- for i in [0, 2]:
- self.assertIn(LogKeys.DATA_LOAD_TIME, lines[i])
- self.assertIn(LogKeys.ITER_TIME, lines[i])
- self.assertIn(LogKeys.MEMORY, lines[i])
- self.assertIn('total_loss', lines[i])
- for i in [1, 3]:
- self.assertIn(
- 'CocoDetectionEvaluator_DetectionBoxes_Precision/mAP',
- lines[i])
- self.assertIn('DetectionBoxes_Precision/mAP', lines[i])
- self.assertIn('DetectionBoxes_Precision/mAP@.50IOU', lines[i])
- self.assertIn('DetectionBoxes_Precision/mAP@.75IOU', lines[i])
- self.assertIn('DetectionBoxes_Precision/mAP (small)', lines[i])
-
-
- if __name__ == '__main__':
- unittest.main()
|