|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import glob
- import os
- import shutil
- import tempfile
- import unittest
-
- import torch
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.metainfo import Trainers
- from modelscope.msdatasets import MsDataset
- from modelscope.trainers import build_trainer
- from modelscope.utils.config import Config
- from modelscope.utils.constant import ModelFile
- from modelscope.utils.test_utils import DistributedTestCase, test_level
-
-
- def _setup():
- model_id = 'damo/cv_resnet_facedetection_scrfd10gkps'
- # mini dataset only for unit test, remove '_mini' for full dataset.
- ms_ds_widerface = MsDataset.load('WIDER_FACE_mini', namespace='shaoxuan')
-
- data_path = ms_ds_widerface.config_kwargs['split_config']
- train_dir = data_path['train']
- val_dir = data_path['validation']
- train_root = train_dir + '/' + os.listdir(train_dir)[0] + '/'
- val_root = val_dir + '/' + os.listdir(val_dir)[0] + '/'
- max_epochs = 1 # run epochs in unit test
-
- cache_path = snapshot_download(model_id, revision='v2')
-
- tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(tmp_dir):
- os.makedirs(tmp_dir)
- return train_root, val_root, max_epochs, cache_path, tmp_dir
-
-
- def train_func(**kwargs):
- trainer = build_trainer(
- name=Trainers.face_detection_scrfd, default_args=kwargs)
- trainer.train()
-
-
- class TestFaceDetectionScrfdTrainerSingleGPU(unittest.TestCase):
-
- def setUp(self):
- print(('SingleGPU Testing %s.%s' %
- (type(self).__name__, self._testMethodName)))
- self.train_root, self.val_root, self.max_epochs, self.cache_path, self.tmp_dir = _setup(
- )
-
- def tearDown(self):
- shutil.rmtree(self.tmp_dir)
- super().tearDown()
-
- def _cfg_modify_fn(self, cfg):
- cfg.checkpoint_config.interval = 1
- cfg.log_config.interval = 10
- cfg.evaluation.interval = 1
- cfg.data.workers_per_gpu = 3
- cfg.data.samples_per_gpu = 4 # batch size
- return cfg
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_trainer_from_scratch(self):
- kwargs = dict(
- cfg_file=os.path.join(self.cache_path, 'mmcv_scrfd.py'),
- work_dir=self.tmp_dir,
- train_root=self.train_root,
- val_root=self.val_root,
- total_epochs=self.max_epochs,
- cfg_modify_fn=self._cfg_modify_fn)
-
- trainer = build_trainer(
- name=Trainers.face_detection_scrfd, default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(self.max_epochs):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_trainer_finetune(self):
- pretrain_epoch = 640
- self.max_epochs += pretrain_epoch
- kwargs = dict(
- cfg_file=os.path.join(self.cache_path, 'mmcv_scrfd.py'),
- work_dir=self.tmp_dir,
- train_root=self.train_root,
- val_root=self.val_root,
- total_epochs=self.max_epochs,
- resume_from=os.path.join(self.cache_path,
- ModelFile.TORCH_MODEL_BIN_FILE),
- cfg_modify_fn=self._cfg_modify_fn)
-
- trainer = build_trainer(
- name=Trainers.face_detection_scrfd, default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(pretrain_epoch, self.max_epochs):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
-
- @unittest.skipIf(not torch.cuda.is_available()
- or torch.cuda.device_count() <= 1, 'distributed unittest')
- class TestFaceDetectionScrfdTrainerMultiGpus(DistributedTestCase):
-
- def setUp(self):
- print(('MultiGPUs Testing %s.%s' %
- (type(self).__name__, self._testMethodName)))
- self.train_root, self.val_root, self.max_epochs, self.cache_path, self.tmp_dir = _setup(
- )
- cfg_file_path = os.path.join(self.cache_path, 'mmcv_scrfd.py')
- cfg = Config.from_file(cfg_file_path)
- cfg.checkpoint_config.interval = 1
- cfg.log_config.interval = 10
- cfg.evaluation.interval = 1
- cfg.data.workers_per_gpu = 3
- cfg.data.samples_per_gpu = 4
- cfg.dump(cfg_file_path)
-
- def tearDown(self):
- shutil.rmtree(self.tmp_dir)
- super().tearDown()
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_multi_gpus_finetune(self):
- pretrain_epoch = 640
- self.max_epochs += pretrain_epoch
- kwargs = dict(
- cfg_file=os.path.join(self.cache_path, 'mmcv_scrfd.py'),
- work_dir=self.tmp_dir,
- train_root=self.train_root,
- val_root=self.val_root,
- total_epochs=self.max_epochs,
- resume_from=os.path.join(self.cache_path,
- ModelFile.TORCH_MODEL_BIN_FILE),
- launcher='pytorch')
- self.start(train_func, num_gpus=2, **kwargs)
- results_files = os.listdir(self.tmp_dir)
- json_files = glob.glob(os.path.join(self.tmp_dir, '*.log.json'))
- self.assertEqual(len(json_files), 1)
- for i in range(pretrain_epoch, self.max_epochs):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
-
- if __name__ == '__main__':
- unittest.main()
|