|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import unittest
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.models import Model
- from modelscope.models.nlp.task_models.sequence_classification import \
- SequenceClassificationModel
- from modelscope.pipelines import pipeline
- from modelscope.pipelines.nlp import TextClassificationPipeline
- from modelscope.preprocessors import SequenceClassificationPreprocessor
- from modelscope.utils.constant import Tasks
- from modelscope.utils.demo_utils import DemoCompatibilityCheck
- from modelscope.utils.test_utils import test_level
-
-
- class SentimentClassificationTaskModelTest(unittest.TestCase,
- DemoCompatibilityCheck):
-
- def setUp(self) -> None:
- self.task = Tasks.text_classification
- self.model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
-
- sentence1 = '启动的时候很大声音,然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音'
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_direct_file_download(self):
- cache_path = snapshot_download(self.model_id)
- tokenizer = SequenceClassificationPreprocessor(cache_path)
- model = SequenceClassificationModel.from_pretrained(
- self.model_id, num_labels=2)
- pipeline1 = TextClassificationPipeline(model, preprocessor=tokenizer)
- pipeline2 = pipeline(
- Tasks.text_classification, model=model, preprocessor=tokenizer)
- print(f'sentence1: {self.sentence1}\n'
- f'pipeline1:{pipeline1(input=self.sentence1)}')
- print(f'sentence1: {self.sentence1}\n'
- f'pipeline1: {pipeline2(input=self.sentence1)}')
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_model_from_modelhub(self):
- model = Model.from_pretrained(self.model_id)
- tokenizer = SequenceClassificationPreprocessor(model.model_dir)
- pipeline_ins = pipeline(
- task=Tasks.text_classification,
- model=model,
- preprocessor=tokenizer)
- print(pipeline_ins(input=self.sentence1))
- self.assertTrue(
- isinstance(pipeline_ins.model, SequenceClassificationModel))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_with_model_name(self):
- pipeline_ins = pipeline(
- task=Tasks.text_classification, model=self.model_id)
- print(pipeline_ins(input=self.sentence1))
- self.assertTrue(
- isinstance(pipeline_ins.model, SequenceClassificationModel))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_with_default_model(self):
- pipeline_ins = pipeline(task=Tasks.text_classification)
- print(pipeline_ins(input=self.sentence1))
- self.assertTrue(
- isinstance(pipeline_ins.model, SequenceClassificationModel))
-
- @unittest.skip('demo compatibility test is only enabled on a needed-basis')
- def test_demo_compatibility(self):
- self.compatibility_check()
-
-
- if __name__ == '__main__':
- unittest.main()
|