|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import shutil
- import unittest
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.models import Model
- from modelscope.models.nlp import BertForSentenceEmbedding
- from modelscope.pipelines import pipeline
- from modelscope.pipelines.nlp import SentenceEmbeddingPipeline
- from modelscope.preprocessors import SentenceEmbeddingPreprocessor
- from modelscope.utils.constant import Tasks
- from modelscope.utils.test_utils import test_level
-
-
- class SentenceEmbeddingTest(unittest.TestCase):
- model_id = 'damo/nlp_corom_sentence-embedding_english-base'
- inputs = {
- 'source_sentence': ["how long it take to get a master's degree"],
- 'sentences_to_compare': [
- "On average, students take about 18 to 24 months to complete a master's degree.",
- 'On the other hand, some students prefer to go at a slower pace and choose to take ',
- 'several years to complete their studies.',
- 'It can take anywhere from two semesters'
- ]
- }
-
- inputs2 = {
- 'source_sentence': ["how long it take to get a master's degree"],
- 'sentences_to_compare': [
- "On average, students take about 18 to 24 months to complete a master's degree."
- ]
- }
-
- inputs3 = {
- 'source_sentence': ["how long it take to get a master's degree"],
- 'sentences_to_compare': []
- }
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_by_direct_model_download(self):
- cache_path = snapshot_download(self.model_id)
- tokenizer = SentenceEmbeddingPreprocessor(cache_path)
- model = BertForSentenceEmbedding.from_pretrained(cache_path)
- pipeline1 = SentenceEmbeddingPipeline(model, preprocessor=tokenizer)
- pipeline2 = pipeline(
- Tasks.sentence_embedding, model=model, preprocessor=tokenizer)
- print(f'inputs: {self.inputs}\n'
- f'pipeline1:{pipeline1(input=self.inputs)}')
- print()
- print(f'pipeline2: {pipeline2(input=self.inputs)}')
- print()
- print(f'inputs: {self.inputs2}\n'
- f'pipeline1:{pipeline1(input=self.inputs2)}')
- print()
- print(f'pipeline2: {pipeline2(input=self.inputs2)}')
- print(f'inputs: {self.inputs3}\n'
- f'pipeline1:{pipeline1(input=self.inputs3)}')
- print()
- print(f'pipeline2: {pipeline2(input=self.inputs3)}')
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_with_model_from_modelhub(self):
- model = Model.from_pretrained(self.model_id)
- tokenizer = SentenceEmbeddingPreprocessor(model.model_dir)
- pipeline_ins = pipeline(
- task=Tasks.sentence_embedding, model=model, preprocessor=tokenizer)
- print(pipeline_ins(input=self.inputs))
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_run_with_model_name(self):
- pipeline_ins = pipeline(
- task=Tasks.sentence_embedding, model=self.model_id)
- print(pipeline_ins(input=self.inputs))
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_default_model(self):
- pipeline_ins = pipeline(task=Tasks.sentence_embedding)
- print(pipeline_ins(input=self.inputs))
-
-
- if __name__ == '__main__':
- unittest.main()
|